
By Lara Marks – Visiting Research Fellow, History of Biomedical Sciences, University of Cambridge
and Ankur Mutreja – Group Leader, Global Health (Infectious Diseases), University of Cambridge
————————————–
SARS-CoV-2, the virus responsible for COVID-19, has turned the world upside down. Experts have predicted that it will claim the lives of between 9-18 million worldwide. This is in addition to destroying the livelihoods, mental health and education of countless others. The pandemic will probably wreak havoc for many years to come, despite the remarkable speed of vaccine development. This is not helped by the emergence of new variants sweeping the world, which pose a serious threat to the success of vaccination and upcoming treatments.
It is difficult to predict the future pattern of SARS-CoV-2. Many scientists believe it will continue to circulate in pockets around the globe, meaning that it will become endemic in the same way as flu. In this context the number of infections remains relatively constant with occasional flare-ups that run the danger of turning into a pandemic. A lot depends on how widely the population around the world can be vaccinated and how long immunity lasts after natural infection or vaccination.
Long term, the best solution would be to develop a universal vaccine – one that would help protect against all current variants of the coronavirus and any others that arise in the future. Without it, the world runs the risk of recurrent pandemics.
Given the difficulties encountered in creating a universal flu vaccine, this may seem a tall order. But a number of scientists believe it is possible based on the rapid development of the SARS-CoV-2 vaccines.
COVID-19 is in fact the third major infectious disease outbreak to have been triggered in the last two decades by a new coronavirus jumping from animals into humans, the other two being Sars and Mers.
To get a sense of how far a pan-coronavirus vaccine has progressed we spoke to a number of key players in the field. We are both experts in this area but come at it from very different angles – Lara Marks is a historian of medicine with an interest in biotechnology and vaccines, while Ankur Mutreja has experience in tracking outbreaks and developing vaccines for infectious diseases. From our conversations, there appear to be a number of encouraging vaccine candidates on the horizon – it is even possible that one could be developed for use in humans within 12 months.
‘The holy grail’
One of the first people we spoke to was Richard Hatchett, the CEO of the Coalition for Epidemic Preparedness Innovations (Cepi). Set up in 2017, Cepi is a global partnership between public, private, philanthropic and civil society organisations that aims to compress the development of vaccines against emerging infectious diseases into 100 days – a third of the time achieved with the first COVID-19 vaccines.
Envisaging equitable access to vaccines for all countries, in March 2021, Cepi announced it would raise and invest US$3.5 billion in vaccine research and development to strengthen global preparedness to pandemics, of which US$200 million has been put aside to develop a universal coronavirus vaccine. Such a vaccine would offer protection against a broad range of coronaviruses, regardless of their variants. This would reduce the need to modify the vaccine on a regular basis.
Hatchett described these vaccines as the “holy grail”. But he argued it may take years of investment. He said: “If you want to grow a tree, the best thing to have done is to have planted it 20 years ago. And if you didn’t do that, then the next best thing is to plant it today.”

Richard Hatchett, CEO of the Coalition for Epidemic Preparedness Innovations. CEPI
When asked about what the best vaccine would be going forward to deal with SARS-CoV-2, Hatchett replied: “We do not actually know specifically yet. This is really our first engagement with this virus, obviously, and we’ve watched it expand and unfold over time … We’re still gathering data and gaining experience on this. I think we need to have some humility about what we know currently and what we can know. We just have to be vigilant.”
Why is SARS-CoV-2 mutating?
None of the scientists we interviewed were surprised to see SARS-CoV-2 mutating. All viruses mutate. They often undergo random genetic changes because the virus replication machinery is not perfect. It is a bit like a game of “telephone” where children repeat what they thought they heard, making mistakes all along the way so that the final message is very different from the original one. Whenever a virus develops one or more mutations it is considered a “variant” of the original virus.
The mutation process helps viruses to adapt and survive any onslaught from the host’s immune system, vaccination or drug treatment and natural competition. Viruses change faster when under such pressures.
Scientists have been monitoring the genetic variations in SARS-CoV-2 since the start of the pandemic. They do this by sequencing the total RNA (genome) of the virus collected from patient samples. The genome is the complete set of genetic instructions an organism needs to function and thrive.
Scientists in China managed to sequence the first SARS-CoV-2 genome just one week after the first patient was hospitalised with unusual pneumonia in Wuhan. First drafted on January 5 2020, the sequence revealed the virus to be a close relative of SARS-CoV-1, a human coronavirus which caused an outbreak of a severe respiratory disease SARS that first appeared in China in 2002 and then spread to many other countries. It also resembled a SARS-like coronavirus found in bats.
Comprising a single-strand of RNA, the SARS-CoV-2 genome turned out to be the longest genome of any known RNA virus. With the aid of sequencing scientists were quickly able to pinpoint the genes that carry the instructions for the spike protein, the part of the virus that helps it to invade human cells. This became an important target for the development of COVID-19 vaccine.

Initial genome sequencing data suggested that SARS-CoV-2 mutated much slower than most other RNA viruses, being half the rate of the virus responsible for flu and a quarter of that found for HIV. But its mutation rate has gathered speed over time, helped by the large reservoir of people it has infected and selection pressures.
Not all mutations are bad news. In some cases, they weaken the virus with the variant disappearing without a trace. But in other cases, they enable the virus to enter a host’s cells more easily or to escape the immune system more effectively, making it more difficult to prevent and treat.
So far, five new variants of concern have emerged with SARS-CoV-2. The first (alpha) was detected in south-east England in September 2020. Others were found shortly thereafter in South Africa (beta), Brazil (gamma), India (delta) and Peru (lambda). What is troubling about these new variants is that they are more transmissible, making them spread faster, which increases the likelihood of re-infection and a resurgence in cases. Every SARS-CoV-2 virus out there today is a variation of the original and new variants will continue to appear.
Preliminary research suggests that the first-generation of vaccines offer some protection against the new variants, helping to reduce severe disease and hospitalisation. However, they will probably become less effective over time as the virus mutates further and the immunity that people have gained, either through vaccination or natural infection, wanes.
Looking for weak spots
In terms of a universal coronavirus vaccine, the ultimate question, Hatchett believes, is whether there are any weak spots that are “conserved across coronaviruses as a viral family to which you can develop immune responses that effectively protect you”.
The key issue in creating a universal vaccine is how broad a coverage the vaccine should offer. This was also pointed out to us by Andrew Ward at the Scripps Research Institute in California. As he put it:

Professor Andrew Ward, Department of Integrative Structural and Computational Biology, The Scripps Research Institute.
Should it be SARS-CoV-2 and variants? Should it be SARS-1 and SARS-2? Should it be all sarbecocoviruses [a subgroup of SARS viruses of which SARS-CoV-1 and 2 are notable members] or SARS-like viruses? That’s unknown. We know that SARS viruses exist in bats and pangolins and they’ve never been as big of a problem as now. But it’s one of those things, that if it’s not really a problem do we go after it and try to proactively get vaccine programmes deployed and get people either vaccinated or stockpile vaccines?
Creating a universal vaccine is itself highly challenging. For example, scientists have tried for years but not yet succeeded in developing a universal vaccine for flu. Nor have they yet managed to create one for HIV. In part, this is because the surface proteins found on these viruses frequently change their appearance. This makes it difficult for our immune system to recognise the virus.
But scientists have made enormous advances in recent years in understanding the interaction between the immune system and viruses that cause flu and HIV. They are now deploying this knowledge to build a universal vaccine for coronaviruses, which do not change as fast.
A long history of vaccine innovation
One of the reasons for optimism with a universal coronavirus vaccine is the successful development of the SARS-CoV-2 vaccine. Made in record time, the foundation for the vaccine was laid many years ago. Until the 1980s most vaccines were developed by modifying a virus or bacteria to make it no longer dangerous. This was achieved by weakening or inactivating the pathogen so that it could be injected safely to stimulate an immune response. While highly successful for protecting against a host diseases like measles, polio, rabies and chickenpox, this approach didn’t prove effective in all diseases.
By the 1980s vaccine production stood on the cusp of change helped by the emergence of biotechnology. Where this was first successfully applied was in the development of a vaccine against hepatitis B, which is estimated to cause more deaths worldwide than TB, HIV or malaria.
The first hepatitis B vaccine was developed by Maurice Hilleman at Merck. Approved in 1981, it was the first vaccine to protect against cancer. Chronic hepatitis B is a major cause of liver cancer. In fact, it is second only to tobacco as a human carcinogen. What was novel about the hepatitis B vaccine was that instead of using the whole hepatitis B virus, which was difficult to grow in the laboratory, it used only a coat surface particle of the virus. This was a major breakthrough for vaccine technology.
Another vaccine that uses virus particles is the one against the human papillomavirus (HPV) which causes cervical cancer, a disease that globally kills 260,000 women every year. First licensed in 2005, the HPV vaccine took years to develop. It consists of tiny proteins that look like the outside of four types of real HPV produced in yeast.
Synthetic vaccines
Vaccine technology underwent a further revolution following the outbreak of the swine flu pandemic that swept the world for 19 months from January 2009. The pandemic killed between 151,700 and 575,400 people worldwide. Caused by an H1N1 influenza virus, the episode was an important reminder of the speed that pandemics can strike and the chaos they can sow. It was also a salutary lesson for companies who developed hundreds of millions of licensed vaccine doses to counter the pandemic. Although achieved within just six months, a historical record, this was not fast enough – by then the peak of infections had passed.
Part of the delay was because of the time it took to grow enough of the virus in eggs or cultured mammalian cells. Another method, using genetic engineering to produce the virus, proved much faster, but was hampered by regulatory hurdles. Determined to accelerate vaccine availability for future pandemics, from 2011, vaccine experts put in place a new strategy that took advantage of advances in genomics and the open sharing of electronic sequence data. Coupled with a new ability to synthesise genes, these tools gave scientists the power to design genome segments from a virus to prepare vaccines to train the body to recognise and target a real virus if it invaded.
Critically, the new synthetic approach moved vaccine development away from the time-consuming process of isolating and shipping viruses between different sites and then growing them at scale. All that was needed was to download the relevant sequence data from the internet and synthesise the right genes to generate relevant viral components to start vaccine development. Speed was not the only advantage the new method offered. It also reduced any potential biohazard risks involved in manufacturing the vaccine.
Attention was also paid to making the testing process more efficient. Usually the slowest part of vaccine development, such testing often takes years to complete. Tests are first conducted in animals, to assess the safety, the strength of the immune response stimulated and protective efficacy of the vaccine candidate. Once this is done it is tested in humans.
Human trials are run in three phases, each with increasing numbers of people and escalating costs. One means to reduce the time needed and cut costs was to take advantage of new biomarkers. These provided a means to measure both normal and pathological processes as well as responses to a drug. Such biomarkers made it possible to determine the toxicity and efficacy of a candidate much earlier in the clinical trial process and to run multiple trials in parallel without compromising on safety.
In 2011, a group of scientists from the companies Novartis and Synthetic Genomics, as well as the Craig Venter Institute (a non-profit research organisation) proved they could develop a vaccine candidate in a matter of days.
Their approach was first successfully put to the test in March 2013 when Chinese health officials reported a novel strain of avian influenza had infected three people. Within just a week of gaining access to the virus’s genome sequence, the Novartis team, headed by Rino Rappoli, managed to create a fully synthetic RNA-based vaccine ready for pre-clinical testing, which proved safe and elicited a good immune response.
Marking the switch from what Rappouli calls “analogue vaccines” to “digital vaccines”, the 2013 work provided a template for when COVID-19 was declared a pandemic on March 11, 2020. The first dose of the COVID-19 vaccine candidate, developed by Moderna, was ready for phase I testing in humans by March 16 2020. Many other vaccine candidates soon entered the pipeline thereafter.
New understandings
What also helped propel the first COVID-19 vaccines forward was the explosion in knowledge about the atomic structure of proteins found on the surface of viruses and antibodies that bound to them. According to Ward this was greatly helped by advances in cryo-electron microscopy which as he says “opened up the door for HIV and other pathogens”. With the technique, Ward and his colleagues discovered that coronaviruses gained entry and fused with human cells with the help of a small loop of amino acids, called S-2P, on the top of their spike proteins. This laid an important foundation for creating the COVID-19 vaccines.
Another critical development was the discovery of broadly neutralising antibodies (bNAbs). First isolated in the early 1990s in the serum of people living with HIV-1, these antibodies only appear in some people after years of infection. Such antibodies have the advantage that they can neutralise multiple diverse strains of the virus in one stroke.
Finding the bNAbs critically opened up a new avenue for vaccine design. In particular, it offered the possibility of creating a universal vaccine against flu and also a vaccine for HIV which so far has been difficult to do because it mutates so fast. Several groups had already made progress in this field before COVID-19 struck, which they quickly turned towards coronaviruses. Their goal was to create a vaccine to stimulate the production of bNAbs targeting the receptor binding domain (RBD) located on the coronavirus’ spike protein.

Barton Haynes, immunologist at Duke University
One approach, outlined to us by Barton Haynes, an immunologist at Duke University, involves attaching little bits of the RBD, from multiple coronaviruses, to a protein nanoparticle for use as a vaccine candidate. Promisingly this was shown in monkeys to not only block SARS-CoV-2 and its new concerning variants but also SARS-CoV-1 and a group of bat coronaviruses which could spill over to humans in the future.
Another potential vaccine was described to us by Pamela Bjorkman, a structural immunologist at the Caltech. Her team developed it based on a virus particle platform first devised at Oxford University, in 2016. She said: “My lab really does structural biology, which means that we look at the 3D structures of the targets of the immune system, which are usually spikes that come out of the virus. So coronaviruses have the famous spikes, and so does HIV and flu.
“One of the things we’ve been trying to do [for a vaccine] is to make a nanoparticle, which is a small, little thing that looks like a miniature soccer ball. And attach pieces of the spike to that using a very easy technology that was developed at Oxford University.”

Pamela Bjorkman, structural immunologist at Caltech
Their vaccine presents many different RBD fragments, from a variety of animal coronaviruses, grafted onto small proteins attached to a nanoparticle scaffolding. Tests in mice showed a single dose of the vaccine could neutralise multiple human and animal coronaviruses, including ones not included in the vaccine design.
According to our interview with Jonathan Heeney, a comparative pathologist at the the University of Cambridge, his group has also developed a promising broad coverage coronavirus vaccine. Based on detailed screening of the virus’s structure they have synthesised DNA constructs to plug into conventional vaccine platforms and the latest mRNA vaccine technology.
The vector is specially designed not to trigger unintentional hyper-inflammatory responses, which can sometimes be life threatening. In animal studies, their candidate provided protection against a variety of sarbecoviruses, which cover SARS-CoV-1, SARS-CoV-2 and many bat coronaviruses.
All three outlined approaches have yet to be tested in humans. The Cambridge one is set to enter phase 1 trials in the autumn and the one at Duke University is nearing that milestone too. Both the Cambridge and Caltech candidates have the attraction that they can be produced as a heat-stable and freeze-dried powder. This will make their storage and distribution much easier than the current mRNA vaccines (Moderna and Pfizer). It will also make production much cheaper, which is vital to ensuring equitable access to the vaccine across the world and bringing the pandemic under control.
New pandemics
While scientists have the tools to develop a pan-coronavirus vaccine within a year, its creation would not be the end of the story. Growing population density, human mobility and ecological change means that the world will continue to face the threat of new pandemics.
Meeting this challenge will require a high degree of outbreak vigilance, political will and international cooperation as well as continued investment in vaccine development well beyond the end of the COVID-19 pandemic. As the WHO put it in September 2020, “a global pandemic requires a world effort to end it – none of us will be safe until everyone is safe”.
Access to vaccines is also only one arm of what is needed to combat pandemics. What SARS-CoV-2 has also taught us is the importance of rapid frontline genomic sequencing on the ground to swiftly detect newly emerging threats. As Hatchett argues, the key to radically reducing epidemic and pandemic risk to the world is through “earlier detection, earlier sequencing, and earlier more tailored public health responses”.

This article is republished here under a Creative Commons license. The original is published in The Conversation.
Healthcare Automation and Digitalization Congress 27th – 28th of September, 2021
, /in Events /by 3wmediaThe business program will cover the following topics:
Healthcare Automation and Digitalization Congress is the networking platform for healthcare providers, clinical laboratories, governmental bodies and institutions, and pharmaceutical companies. It is a place for experts to share their cases, exhibitors to showcase their solutions, and industry representatives to discuss healthcare trends at the same venue.
Request business program: https://bit.ly/3C3aFk3
Join the Green Hospitals event to develop innovative practices for a sustainable future
, /in E-News, Events /by panglobalAshikaga Red Cross Hospital, Japan’s first green hospital
Leaders of the global healthcare community are invited to attend an important virtual event looking at developing innovative practices for a sustainable future.
The event – Green Hospitals: Sharing innovative practices for a sustainable future – on 7 October (12pm – 3pm UTC), is being hosted by the International Hospital Federation and Dialog Health.
It will bring together hospital executives from around the world to share their strategies and experiences in promoting sustainability in the healthcare sector.
Climate change – a major threat to public health
Hospital and healthcare professionals are at the forefront of the fight against climate change, which is at risk of becoming the biggest public health threat of our generation:
Dr. Satoru Komatsumoto, Emeritus Director of Ashikaga Red Cross Hospital, will share his insights into designing a resilient hospital.
The keynote speaker at the event will be Dr. Satoru Komatsumoto, Emeritus Director of Ashikaga Red Cross Hospital, which is Japan’s first green hospital Dr. Komatsumoto will share his insights into designing a resilient hospital.
He commented: “Sixteen years ago, I proposed that our hospital should be eco-conscious. I wanted to create a hospital that would be beautiful and that would organically integrate all the features to meet the challenges of the future… I wondered what kind of hospital would meet the needs of our time. I studied very hard to imagine a next generation hospital.”
The program also includes speakers from Europe and the USA who will share strategies to achieve net zero carbon emissions by 2030, sustainable food circuits and building a carbon-neutral hospital. There will also be dedicated time for small group discussions with the experts to explore innovative ideas.
Oxygen: Tragic incidents highlight safety dilemma for hospitals
, /in Product News /by panglobalRecent tragic events in India and Iraq have focused minds on the safety measures in place at hospitals for the storage of oxygen supplies. Now gas processing systems specialist Oxair is urging medical and healthcare facilities across the world to avoid shortcuts and consider safety above all when ordering in their oxygen supplies.
At least 22 people died in a hospital in India when the flow of oxygen through ventilators was fatally interrupted. Meanwhile in Iraq 174 were killed in two separate catastrophic fires within three months at hospitals in the capital Baghdad and Nassiriya, reportedly caused by oxygen tanks exploding.
International health agencies had sounded warnings about a growing crisis of severe oxygen shortages, which is leading to hospitals outsourcing as many oxygen cylinders as possible. However, there are potential pitfalls such as a lack of suitable and safe storage space. Oxair has developed a simpler, safer solution – and it has already been deployed and proven.
Oxygen Pressure Swing Adsorption system
A significant number of hospitals across India and other regions of the Middle East and Australasia are now self-sufficient and saving lives with an off-the-shelf Oxygen Pressure Swing Adsorption (PSA) system. These are high quality, robust medical devices designed to last and deliver consistent, high purity oxygen on tap to hospitals and healthcare facilities – even in the remotest locations around the world.
As it extracts its supplies directly from the atmosphere, PSA Oxygen offers better patient care with a permanent flow of high-quality oxygen. This system saves room space, offers output pressure and a flow rate to suit the needs of the hospital and is capable of piping oxygen to every department where it is needed.
Oxair’s system delivers constant oxygen of 94-95 per cent purity through PSA filtration, a unique process that separates oxygen from compressed air. The gas is then conditioned and filtered before being stored in a buffer tank to be used directly by the end user on demand. Orders for ready-to-use, standalone Oxygen PSA units can be turned around in just a few weeks, depending on local lockdown conditions.
David Cheeseman of Oxair said: “We’ve seen terrible consequences recently from a lack of life-saving medical oxygen, especially when treating Covid-19 patients. But there’s a lot more to it than simply pulling in extra cylinder supplies. If exposed to certain conditions the storage, handling and removal of these cylinders can also be hugely dangerous. It’s precisely the type of far-lying medical facility that might run out of oxygen, that is least equipped to store more of it safely and securely.
“We believe our PSA systems are the safest and ultimately cheapest solution for hospitals anywhere. The design of these PSA systems as ‘plug-and-play’ means that they are literally ready to start working as soon as they are delivered and plugged in, with voltage adapted to the country of delivery. So, hospitals can rely on technology that is tried and tested over many years, coupled with almost instant access to vital oxygen supplies under significantly safer conditions.”
Researchers observe for first time T cells travelling from gut to central nervous system
, /in E-News /by panglobalThomas Korn, professor of experimental neuroimmunology at TUM
Scientists have long been aware of a link between the gut microbiome and the central nervous system (CNS). Until now, however, the immune cells that move from the gut into the CNS and thus the brain had not been identified. A team of researchers in Munich has now succeeded in using violet light to make these migrating T cells visible for the first time. This opens up avenues for developing new treatment options for diseases such as multiple sclerosis (MS) and cancer.
The link between the gut microbiome and the CNS, known as the gut/brain axis (GBA), is believed to be responsible for many things: a person’s body weight, autoimmune diseases, depression, mental illnesses and Alzheimer’s disease. Researchers at the Technical University of Munich (TUM) and LMU University Hospital Munich have now succeeded in making this connection visible for the first time. This is cause for hope – for those suffering from MS, for example. It may offer ways to adapt treatments, and T cells could perhaps be modified before reaching the brain.
Immune cell migration in MS
The immune system is affected by environmental factors – also in the central nervous system in case of MS patients. This autoimmune disease is subject to repeated flare-ups, experienced by patients as the improvement or worsening of their condition. T cells collect information and, in MS patients, carry it to the central nervous system (in the brain or spinal cord) where an immune response is triggered. Until now, however, it was long uncertain how and from where the T cells were travelling to the CNS
Using violet light to track marked T cells
The team working with Thomas Korn, a professor of experimental neuroimmunology at TUM, has developed a method for marking immune cells in mice using photoconvertible proteins. The T cells can then be made visible with violet light. The researchers successfully tested this method with the mouse model in lymph nodes, both in the gut and the skin. They were able to track the movement of the T cells from those locations into the central nervous systems.
Characteristics of T cells reveal their origin
T cells from the skin migrated into the grey and white matter of the CNS, while almost all T cells from the gut ended up in the white matter. For T cells in the brain, it was still possible to determine their origin.
“What makes these insights so important is that they demonstrate for the first time that environmental influences impact the T cells in lymph nodes in the gut and the skin, which then carry this information into the distant organs,” said Prof. Thomas Korn. “The characteristics of the T cells are sufficiently stable for us to determine whether immune responses are influenced by skin or gut T cells,” added LMU researcher Dr. Eduardo Beltrán, who performed the bioinformatic analyses in this study.
Starting point for future treatments
Michael Hiltensperger, first author, remarked that the research provided an important insight for MS patients: “If gut or skin cells were known to be the cause, the T cells could be treated at the source of the disease and predictions could be made on the progress of the chronic inflammation and autoimmune condition. The results of the study could also mean a breakthrough for research on other autoimmune diseases or cancer.
Reference:
Hiltensperger, M., Beltrán, E., Kant, R. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nature Immunology 22, 880–892 (2021).
https://doi.org/10.1038/s41590-021-00948-8
COVID variants: We spoke to the experts designing a single vaccine to defeat them all
, /in Corona News, Featured Articles /by panglobalBy Lara Marks – Visiting Research Fellow, History of Biomedical Sciences, University of Cambridge
and Ankur Mutreja – Group Leader, Global Health (Infectious Diseases), University of Cambridge
————————————–
SARS-CoV-2, the virus responsible for COVID-19, has turned the world upside down. Experts have predicted that it will claim the lives of between 9-18 million worldwide. This is in addition to destroying the livelihoods, mental health and education of countless others. The pandemic will probably wreak havoc for many years to come, despite the remarkable speed of vaccine development. This is not helped by the emergence of new variants sweeping the world, which pose a serious threat to the success of vaccination and upcoming treatments.
It is difficult to predict the future pattern of SARS-CoV-2. Many scientists believe it will continue to circulate in pockets around the globe, meaning that it will become endemic in the same way as flu. In this context the number of infections remains relatively constant with occasional flare-ups that run the danger of turning into a pandemic. A lot depends on how widely the population around the world can be vaccinated and how long immunity lasts after natural infection or vaccination.
Long term, the best solution would be to develop a universal vaccine – one that would help protect against all current variants of the coronavirus and any others that arise in the future. Without it, the world runs the risk of recurrent pandemics.
Given the difficulties encountered in creating a universal flu vaccine, this may seem a tall order. But a number of scientists believe it is possible based on the rapid development of the SARS-CoV-2 vaccines.
COVID-19 is in fact the third major infectious disease outbreak to have been triggered in the last two decades by a new coronavirus jumping from animals into humans, the other two being Sars and Mers.
To get a sense of how far a pan-coronavirus vaccine has progressed we spoke to a number of key players in the field. We are both experts in this area but come at it from very different angles – Lara Marks is a historian of medicine with an interest in biotechnology and vaccines, while Ankur Mutreja has experience in tracking outbreaks and developing vaccines for infectious diseases. From our conversations, there appear to be a number of encouraging vaccine candidates on the horizon – it is even possible that one could be developed for use in humans within 12 months.
‘The holy grail’
One of the first people we spoke to was Richard Hatchett, the CEO of the Coalition for Epidemic Preparedness Innovations (Cepi). Set up in 2017, Cepi is a global partnership between public, private, philanthropic and civil society organisations that aims to compress the development of vaccines against emerging infectious diseases into 100 days – a third of the time achieved with the first COVID-19 vaccines.
Envisaging equitable access to vaccines for all countries, in March 2021, Cepi announced it would raise and invest US$3.5 billion in vaccine research and development to strengthen global preparedness to pandemics, of which US$200 million has been put aside to develop a universal coronavirus vaccine. Such a vaccine would offer protection against a broad range of coronaviruses, regardless of their variants. This would reduce the need to modify the vaccine on a regular basis.
Hatchett described these vaccines as the “holy grail”. But he argued it may take years of investment. He said: “If you want to grow a tree, the best thing to have done is to have planted it 20 years ago. And if you didn’t do that, then the next best thing is to plant it today.”
Richard Hatchett, CEO of the Coalition for Epidemic Preparedness Innovations. CEPI
When asked about what the best vaccine would be going forward to deal with SARS-CoV-2, Hatchett replied: “We do not actually know specifically yet. This is really our first engagement with this virus, obviously, and we’ve watched it expand and unfold over time … We’re still gathering data and gaining experience on this. I think we need to have some humility about what we know currently and what we can know. We just have to be vigilant.”
Why is SARS-CoV-2 mutating?
None of the scientists we interviewed were surprised to see SARS-CoV-2 mutating. All viruses mutate. They often undergo random genetic changes because the virus replication machinery is not perfect. It is a bit like a game of “telephone” where children repeat what they thought they heard, making mistakes all along the way so that the final message is very different from the original one. Whenever a virus develops one or more mutations it is considered a “variant” of the original virus.
The mutation process helps viruses to adapt and survive any onslaught from the host’s immune system, vaccination or drug treatment and natural competition. Viruses change faster when under such pressures.
Scientists have been monitoring the genetic variations in SARS-CoV-2 since the start of the pandemic. They do this by sequencing the total RNA (genome) of the virus collected from patient samples. The genome is the complete set of genetic instructions an organism needs to function and thrive.
Scientists in China managed to sequence the first SARS-CoV-2 genome just one week after the first patient was hospitalised with unusual pneumonia in Wuhan. First drafted on January 5 2020, the sequence revealed the virus to be a close relative of SARS-CoV-1, a human coronavirus which caused an outbreak of a severe respiratory disease SARS that first appeared in China in 2002 and then spread to many other countries. It also resembled a SARS-like coronavirus found in bats.
Comprising a single-strand of RNA, the SARS-CoV-2 genome turned out to be the longest genome of any known RNA virus. With the aid of sequencing scientists were quickly able to pinpoint the genes that carry the instructions for the spike protein, the part of the virus that helps it to invade human cells. This became an important target for the development of COVID-19 vaccine.
Initial genome sequencing data suggested that SARS-CoV-2 mutated much slower than most other RNA viruses, being half the rate of the virus responsible for flu and a quarter of that found for HIV. But its mutation rate has gathered speed over time, helped by the large reservoir of people it has infected and selection pressures.
Not all mutations are bad news. In some cases, they weaken the virus with the variant disappearing without a trace. But in other cases, they enable the virus to enter a host’s cells more easily or to escape the immune system more effectively, making it more difficult to prevent and treat.
So far, five new variants of concern have emerged with SARS-CoV-2. The first (alpha) was detected in south-east England in September 2020. Others were found shortly thereafter in South Africa (beta), Brazil (gamma), India (delta) and Peru (lambda). What is troubling about these new variants is that they are more transmissible, making them spread faster, which increases the likelihood of re-infection and a resurgence in cases. Every SARS-CoV-2 virus out there today is a variation of the original and new variants will continue to appear.
Preliminary research suggests that the first-generation of vaccines offer some protection against the new variants, helping to reduce severe disease and hospitalisation. However, they will probably become less effective over time as the virus mutates further and the immunity that people have gained, either through vaccination or natural infection, wanes.
Looking for weak spots
In terms of a universal coronavirus vaccine, the ultimate question, Hatchett believes, is whether there are any weak spots that are “conserved across coronaviruses as a viral family to which you can develop immune responses that effectively protect you”.
The key issue in creating a universal vaccine is how broad a coverage the vaccine should offer. This was also pointed out to us by Andrew Ward at the Scripps Research Institute in California. As he put it:
Professor Andrew Ward, Department of Integrative Structural and Computational Biology, The Scripps Research Institute.
Should it be SARS-CoV-2 and variants? Should it be SARS-1 and SARS-2? Should it be all sarbecocoviruses [a subgroup of SARS viruses of which SARS-CoV-1 and 2 are notable members] or SARS-like viruses? That’s unknown. We know that SARS viruses exist in bats and pangolins and they’ve never been as big of a problem as now. But it’s one of those things, that if it’s not really a problem do we go after it and try to proactively get vaccine programmes deployed and get people either vaccinated or stockpile vaccines?
Creating a universal vaccine is itself highly challenging. For example, scientists have tried for years but not yet succeeded in developing a universal vaccine for flu. Nor have they yet managed to create one for HIV. In part, this is because the surface proteins found on these viruses frequently change their appearance. This makes it difficult for our immune system to recognise the virus.
But scientists have made enormous advances in recent years in understanding the interaction between the immune system and viruses that cause flu and HIV. They are now deploying this knowledge to build a universal vaccine for coronaviruses, which do not change as fast.
A long history of vaccine innovation
One of the reasons for optimism with a universal coronavirus vaccine is the successful development of the SARS-CoV-2 vaccine. Made in record time, the foundation for the vaccine was laid many years ago. Until the 1980s most vaccines were developed by modifying a virus or bacteria to make it no longer dangerous. This was achieved by weakening or inactivating the pathogen so that it could be injected safely to stimulate an immune response. While highly successful for protecting against a host diseases like measles, polio, rabies and chickenpox, this approach didn’t prove effective in all diseases.
By the 1980s vaccine production stood on the cusp of change helped by the emergence of biotechnology. Where this was first successfully applied was in the development of a vaccine against hepatitis B, which is estimated to cause more deaths worldwide than TB, HIV or malaria.
The first hepatitis B vaccine was developed by Maurice Hilleman at Merck. Approved in 1981, it was the first vaccine to protect against cancer. Chronic hepatitis B is a major cause of liver cancer. In fact, it is second only to tobacco as a human carcinogen. What was novel about the hepatitis B vaccine was that instead of using the whole hepatitis B virus, which was difficult to grow in the laboratory, it used only a coat surface particle of the virus. This was a major breakthrough for vaccine technology.
Another vaccine that uses virus particles is the one against the human papillomavirus (HPV) which causes cervical cancer, a disease that globally kills 260,000 women every year. First licensed in 2005, the HPV vaccine took years to develop. It consists of tiny proteins that look like the outside of four types of real HPV produced in yeast.
Synthetic vaccines
Vaccine technology underwent a further revolution following the outbreak of the swine flu pandemic that swept the world for 19 months from January 2009. The pandemic killed between 151,700 and 575,400 people worldwide. Caused by an H1N1 influenza virus, the episode was an important reminder of the speed that pandemics can strike and the chaos they can sow. It was also a salutary lesson for companies who developed hundreds of millions of licensed vaccine doses to counter the pandemic. Although achieved within just six months, a historical record, this was not fast enough – by then the peak of infections had passed.
Part of the delay was because of the time it took to grow enough of the virus in eggs or cultured mammalian cells. Another method, using genetic engineering to produce the virus, proved much faster, but was hampered by regulatory hurdles. Determined to accelerate vaccine availability for future pandemics, from 2011, vaccine experts put in place a new strategy that took advantage of advances in genomics and the open sharing of electronic sequence data. Coupled with a new ability to synthesise genes, these tools gave scientists the power to design genome segments from a virus to prepare vaccines to train the body to recognise and target a real virus if it invaded.
Critically, the new synthetic approach moved vaccine development away from the time-consuming process of isolating and shipping viruses between different sites and then growing them at scale. All that was needed was to download the relevant sequence data from the internet and synthesise the right genes to generate relevant viral components to start vaccine development. Speed was not the only advantage the new method offered. It also reduced any potential biohazard risks involved in manufacturing the vaccine.
Attention was also paid to making the testing process more efficient. Usually the slowest part of vaccine development, such testing often takes years to complete. Tests are first conducted in animals, to assess the safety, the strength of the immune response stimulated and protective efficacy of the vaccine candidate. Once this is done it is tested in humans.
Human trials are run in three phases, each with increasing numbers of people and escalating costs. One means to reduce the time needed and cut costs was to take advantage of new biomarkers. These provided a means to measure both normal and pathological processes as well as responses to a drug. Such biomarkers made it possible to determine the toxicity and efficacy of a candidate much earlier in the clinical trial process and to run multiple trials in parallel without compromising on safety.
In 2011, a group of scientists from the companies Novartis and Synthetic Genomics, as well as the Craig Venter Institute (a non-profit research organisation) proved they could develop a vaccine candidate in a matter of days.
Their approach was first successfully put to the test in March 2013 when Chinese health officials reported a novel strain of avian influenza had infected three people. Within just a week of gaining access to the virus’s genome sequence, the Novartis team, headed by Rino Rappoli, managed to create a fully synthetic RNA-based vaccine ready for pre-clinical testing, which proved safe and elicited a good immune response.
Marking the switch from what Rappouli calls “analogue vaccines” to “digital vaccines”, the 2013 work provided a template for when COVID-19 was declared a pandemic on March 11, 2020. The first dose of the COVID-19 vaccine candidate, developed by Moderna, was ready for phase I testing in humans by March 16 2020. Many other vaccine candidates soon entered the pipeline thereafter.
New understandings
What also helped propel the first COVID-19 vaccines forward was the explosion in knowledge about the atomic structure of proteins found on the surface of viruses and antibodies that bound to them. According to Ward this was greatly helped by advances in cryo-electron microscopy which as he says “opened up the door for HIV and other pathogens”. With the technique, Ward and his colleagues discovered that coronaviruses gained entry and fused with human cells with the help of a small loop of amino acids, called S-2P, on the top of their spike proteins. This laid an important foundation for creating the COVID-19 vaccines.
Another critical development was the discovery of broadly neutralising antibodies (bNAbs). First isolated in the early 1990s in the serum of people living with HIV-1, these antibodies only appear in some people after years of infection. Such antibodies have the advantage that they can neutralise multiple diverse strains of the virus in one stroke.
Finding the bNAbs critically opened up a new avenue for vaccine design. In particular, it offered the possibility of creating a universal vaccine against flu and also a vaccine for HIV which so far has been difficult to do because it mutates so fast. Several groups had already made progress in this field before COVID-19 struck, which they quickly turned towards coronaviruses. Their goal was to create a vaccine to stimulate the production of bNAbs targeting the receptor binding domain (RBD) located on the coronavirus’ spike protein.
Barton Haynes, immunologist at Duke University
One approach, outlined to us by Barton Haynes, an immunologist at Duke University, involves attaching little bits of the RBD, from multiple coronaviruses, to a protein nanoparticle for use as a vaccine candidate. Promisingly this was shown in monkeys to not only block SARS-CoV-2 and its new concerning variants but also SARS-CoV-1 and a group of bat coronaviruses which could spill over to humans in the future.
Another potential vaccine was described to us by Pamela Bjorkman, a structural immunologist at the Caltech. Her team developed it based on a virus particle platform first devised at Oxford University, in 2016. She said: “My lab really does structural biology, which means that we look at the 3D structures of the targets of the immune system, which are usually spikes that come out of the virus. So coronaviruses have the famous spikes, and so does HIV and flu.
“One of the things we’ve been trying to do [for a vaccine] is to make a nanoparticle, which is a small, little thing that looks like a miniature soccer ball. And attach pieces of the spike to that using a very easy technology that was developed at Oxford University.”
Pamela Bjorkman, structural immunologist at Caltech
Their vaccine presents many different RBD fragments, from a variety of animal coronaviruses, grafted onto small proteins attached to a nanoparticle scaffolding. Tests in mice showed a single dose of the vaccine could neutralise multiple human and animal coronaviruses, including ones not included in the vaccine design.
According to our interview with Jonathan Heeney, a comparative pathologist at the the University of Cambridge, his group has also developed a promising broad coverage coronavirus vaccine. Based on detailed screening of the virus’s structure they have synthesised DNA constructs to plug into conventional vaccine platforms and the latest mRNA vaccine technology.
The vector is specially designed not to trigger unintentional hyper-inflammatory responses, which can sometimes be life threatening. In animal studies, their candidate provided protection against a variety of sarbecoviruses, which cover SARS-CoV-1, SARS-CoV-2 and many bat coronaviruses.
All three outlined approaches have yet to be tested in humans. The Cambridge one is set to enter phase 1 trials in the autumn and the one at Duke University is nearing that milestone too. Both the Cambridge and Caltech candidates have the attraction that they can be produced as a heat-stable and freeze-dried powder. This will make their storage and distribution much easier than the current mRNA vaccines (Moderna and Pfizer). It will also make production much cheaper, which is vital to ensuring equitable access to the vaccine across the world and bringing the pandemic under control.
New pandemics
While scientists have the tools to develop a pan-coronavirus vaccine within a year, its creation would not be the end of the story. Growing population density, human mobility and ecological change means that the world will continue to face the threat of new pandemics.
Meeting this challenge will require a high degree of outbreak vigilance, political will and international cooperation as well as continued investment in vaccine development well beyond the end of the COVID-19 pandemic. As the WHO put it in September 2020, “a global pandemic requires a world effort to end it – none of us will be safe until everyone is safe”.
Access to vaccines is also only one arm of what is needed to combat pandemics. What SARS-CoV-2 has also taught us is the importance of rapid frontline genomic sequencing on the ground to swiftly detect newly emerging threats. As Hatchett argues, the key to radically reducing epidemic and pandemic risk to the world is through “earlier detection, earlier sequencing, and earlier more tailored public health responses”.
This article is republished here under a Creative Commons license. The original is published in The Conversation.
23rd National Healthcare CXO Summit set for October in Boston
, /in E-News, Events /by panglobalThe 23rd National Healthcare CXO Summit will take place on 24-26 October 2021 in Boston, MA. This summit gathers leading healthcare executives and innovative suppliers and solution providers physically together at a premium location, the Boston, Encore, Boston, MA.
The summit effectively unites experts in an exclusive networking environment providing the opportunity to pre-schedule one-to-one physical business meetings with leading and forward-thinking executives. Delegates that have attended in the past include:
The one-to-one business meetings provide access to the gate keepers of sizeable budgets – top executives actively seeking external partnerships with operational, management, financial and technology solutions, geared entirely to the needs of healthcare industry.
More info
To find more information about the summit, visit: https://bit.ly/2WNlYO2
or contact directly Isidora Avraam at: isidoraa@marcusevanscy.com.
Biotronik partners with EU-funded SIMCor to pioneer heart and blood vessel simulation
Biotronik, Cardiology, Research, /in E-News /by panglobalWhat if a computer simulation model of the heart and blood vessel could reduce the need for human or animal data in clinical trials, while speeding up product development? Biotronik and their research partners are looking into exactly that question in the new EU-funded SIMCor project. One of the first likely developments from this partnership will be an implantable sensor to better manage heart failure.
More than 10 million people in Europe suffer from heart failure. Beyond its obvious impacts on patient quality of life, treating heart failure uses 1-2% of a developed country’s health budget every year, with two-thirds of that taken up by hospital stays. If we can help reduce hospital visits related to heart failure, we can both help heart failure patients live better lives and reduce overall healthcare costs. That’s just one reason why Biotronik is taking part in SIMCor, a three-year EU-funded project to develop an implantable pressure sensor that aims to help heart failure patients and physicians better manage their condition.
Along with Biotronik, SimCor includes 11 partners from eight countries, including Berlin’s Charité Hospital. By pooling resources and data, SIMCor’s goal is to speed up the development of this technology and achieve results as fast as possible.
Beyond a new and innovative technology to support heart failure patients, the SIMCor partnership also has the potential to provide even longer-lasting benefits. If successful, computer simulations of the heart-implant interaction could speed up product testing and regulatory approval, providing many patients with technology that can save and improve their lives in a more timely manner.
How the SIMCor partnership can speed up the development process
The SIMCor project focuses on developing computer simulation technology that can help test and validate medical devices. These computerized tests could replace the need for animal testing and help make clinical studies even safer for patients. If a large and high-quality dataset is available, researchers can simulate clinical interventions in virtual patient cohorts. Over the longer term, this could reduce clinical trial size by 25%, with 30% less time required to complete studies. In the end, this allows medical devices to be quickly approved to help patients. The US FDA has already noted the potential positive effects such modelling could have, and is encouraging the development of simulation technology. By working together, Biotronik and its SIMCor partners can conduct these simulations using far bigger datasets than would otherwise be available, yielding the sophisticated modelling required to simulate heart and blood vessels.
Dr. Torsten Luther, Director of Product Development for Delivery Tools, Leads & Accessories in R&D at Biotronik
“We need to demonstrate that implants perform well across the whole patient population. That’s a long and sometimes challenging process because patient anatomy can vary widely, especially due to diseases,” said Dr. Torsten Luther, Director of Product Development for Delivery Tools, Leads & Accessories in R&D at Biotronik. “Using a large data pool to simulate different parts of the cardiovascular system, such as the heart or pulmonary artery, allows us to test implant performance across a wide range of anatomies representing the whole patient population. We can then optimize our technology for everyone.”
Collaboration is an important driver for innovation
Research and development have always been a priority at Biotronik. Since developing the first German pacemaker in 1963, Biotronik has continued to pave the way for pioneering innovations. In its Berlin headquarters alone, one out of every five employees work in R&D, ensuring that medical technology keeps pace with the interests and needs of future patients and physicians.
By investing in clinical trials and initiating research projects, Biotronik seeks to address research gaps and offer practical treatment options.
Dr. Andreas Arndt, Team Lead R&D Sensors and SIMCor project coordinator at Biotronik
“The SimCor project is a great example of how we work together with like-minded partners from different industries as well as academic institutions across Europe. We profit from each other’s knowledge and together, we can make an impactful contribution to medical research. In this regard, I believe that collaboration can be a key driver for innovation,” said Dr. Andreas Arndt, Team Lead R&D Sensors and SIMCor project coordinator at Biotronik.
See a Computer Simulation of the Pulmonary Artery
YouTube: https://youtu.be/8YMsoXsH4P8
How will Delta evolve? Here’s what the theory tells us
, /in Corona News, Featured Articles /by panglobalBy Hamish McCallum
Director, Centre for Planetary Health and Food Security, Griffith University
The COVID-19 pandemic is a dramatic demonstration of evolution in action. Evolutionary theory explains much of what has already happened, predicts what will happen in the future and suggests which management strategies are likely to be the most effective.
For instance, evolution explains why the Delta variant spreads faster than the original Wuhan strain. It explains what we might see with future variants. And it suggests how we might step up public health measures to respond.
But Delta is not the end of the story for SARS-CoV-2, the virus that causes COVID-19. Here’s what evolutionary theory tells us happens next.
Remind me again, how do viruses evolve?
Evolution is a result of random mutations (or errors) in the viral genome when it replicates. A few of these random mutations will be good for the virus, conferring some advantage. Copies of these advantageous genes are more likely to survive into the next generation, via the process of natural selection.
New viral strains can also develop via recombination, when viruses acquire genes from other viruses or even from their hosts.
Generally speaking, we can expect evolution to favour virus strains that result in a steeper epidemic curve, producing more cases more quickly, leading to two predictions.
First, the virus should become more transmissible. One infected person will be likely to infect more people; future versions of the virus will have a higher reproductive or R number.
Second, we can also expect evolution will shorten the time it takes between someone becoming infected and infecting others (a shorter “serial interval”).
Both these predicted changes are clearly good news for the virus, but not for its host.
Aha, so that explains Delta
This theory explains why Delta is now sweeping the world and replacing the original Wuhan strain.
The original Wuhan strain had an R value of 2-3 but Delta’s R value is about 5-6 (some researchers say this figure is even higher). So someone infected with Delta is likely to infect at least twice as many people as the original Wuhan strain.
There’s also evidence Delta has a much shorter serial interval compared with the original Wuhan strain.
This may be related to a higher viral load (more copies of the virus) in someone infected with Delta compared with earlier strains. This may allow Delta to transmit sooner after infection.
A higher viral load may also make Delta transmit more easily in the open air and after “fleeting contact”.
Do vaccines affect how the virus evolves?
We know COVID-19 vaccines designed to protect against the original Wuhan strain work against Delta but are less effective. Evolutionary theory predicts this; viral variants that can evade vaccines have an evolutionary advantage.
So we can expect an arms race between vaccine developers and the virus, with vaccines trying to play catch up with viral evolution. This is why we’re likely to see us having regular booster shots, designed to overcome these new variants, just like we see with flu booster shots.
COVID-19 vaccines reduce your chance of transmitting the virus to others, but they don’t totally block transmission. And evolutionary theory gives us a cautionary tale.
There’s a trade-off between transmissibility and how sick a person gets (virulence) with most disease-causing microorganisms. This is because you need a certain viral load to be able to transmit.
If vaccines are not 100% effective in blocking transmission, we can expect a shift in the trade-off towards higher virulence. In other words, a side-effect of the virus being able to transmit from vaccinated people is, over time, the theory predicts it will become more harmful to unvaccinated people.
How about future variants?
In the short term, it’s highly likely evolution will continue to “fine tune” the virus:
But we don’t know how far these changes might go and how fast this might happen.
Some scientists think the virus may already be approaching “peak fitness”. Nevertheless, it may still have some tricks up its sleeve.
The UK government’s Scientific Advisory Group for Emergencies (SAGE) has recently explored scenarios for long-term evolution of the virus.
It says it is almost certain there will be “antigenic drift”, accumulation of small mutations leading to the current vaccines becoming less effective, so boosters with modified vaccines will be essential.
It then says more dramatic changes in the virus (“antigenic shift”), which might occur through recombination with other human coronaviruses, is a “realistic possibility”. This would require more substantial re-engineering of the vaccines.
SAGE also thinks there is a realistic possibility of a “reverse zoonosis”, leading to a virus that may be more pathogenic (harmful) to humans or able to evade existing vaccines. This would be a scenario where SARS-CoV-2 infects animals, before crossing back into humans. We’ve already seen SARS-CoV-2 infect mink, felines and rodents.
Will the virus become more deadly?
Versions of the virus that make their host very sick (are highly virulent) are generally selected against. This is because people would be more likely to die or be isolated, lowering the chance of the virus transmitting to others.
SAGE thinks this process is unlikely to cause the virus to become less virulent in the short term, but this is a realistic possibility in the long-term. Yet SAGE says there is a realistic possibility more virulent strains might develop via recombination (which other coronaviruses are known to do).
So the answer to this critical question is we really don’t know if the virus will become more deadly over time. But we can’t expect the virus to magically become harmless.
Will humans evolve to catch up?
Sadly, the answer is “no”. Humans do not reproduce fast enough, and accumulate enough favourable mutations quickly enough, for us to stay ahead of the virus.
The virus also does not kill most people it infects. And in countries with well-resourced health-care systems, it doesn’t kill many people of reproductive age. So there’s no “selection pressure” for humans to mutate favourably to stay ahead of the virus.
What about future pandemics?
Finally, evolutionary theory has a warning about future pandemics.
A gene mutation that allows a virus in an obscure and relatively rare species (such as a bat) to gain access to the most common and widely distributed species of large animal on the planet — humans — will be strongly selected for.
So we can expect future pandemics when animal viruses spill over into humans, just as they have done in the past.
This article is republished here under a Creative Commons license.
The original was published in The Conversation here:
https://theconversation.com/how-will-delta-evolve-heres-what-the-theory-tells-us-165243
Fenofibrate dramatically shortens treatment time for severe Covid-19 patients – new clinical trials show
, /in Corona News, E-News /by panglobalA team at the Hebrew University of Jerusalem (HU) is reporting “astounding” results from a trial to check the efficacy of the lipid-lowering drug TriCor (fenofibrate) as a treatment for patients with severe Covid-19.
In earlier research, the team at HU, lead by Professor Yaakov Nahmias, reported that the new coronavirus causes abnormal accumulation of lipids, which are known to initiate severe inflammation in a process called lipotoxicity. Last year the team identified the lipid-lowering drug TriCor (fenofibrate) as an effective antiviral, showing it both reduced lung cell damage and blocked virus replication in the laboratory. These results have since been confirmed by several international research teams. An observational study carried out in multiple clinical centres in Israel was reported last October to support the original findings. The team then launched an interventional clinical study to treat severe Covid-19 patients at Israel’s Barzilai Medical Center with support from Abbott Laboratories.
Now, the HU team is reporting promising results from this trial – an investigator-initiated interventional open-label clinical study led by Nahmias and coordinated by Prof. Shlomo Maayan, Head of Infectious Disease Unit at Barzilai. In this single-arm, open-label study, 15 severe-hospitalized Covid-19 patients with pneumonia requiring oxygen support were treated. In addition to standard of care, the patients were given 145 mg/day of TriCor (fenofibrate) for 10 days and continuously monitored for disease progression and outcomes.
The findings were posted 12 August on Research Square and are currently under peer-review.
“The results were astounding,” said Nahmias. “Progressive inflammation markers, that are the hallmark of deteriorative Covid-19, dropped within 48 hours of treatment. Moreover, 14 of the 15 severe patients didn’t require oxygen support within a week of treatment, while historical records show that the vast majority severe patients treated with the standard of care require lengthy respiratory support,” he added.
These results are promising as TriCor (fenofibrate) was approved by the FDA in 1975 for long-term use and has a strong safety record.
“There are no silver bullets,” stressed Nahmias, “but fenofibrate is far safer than other drugs proposed to date, and its mechanism of action makes is less likely to be variant-specific.”
“All patients were discharged within less than a week after the treatment began and were discharged to complete the 10-day treatment at home, with no drug-related adverse events reported,” noted Maayan. “Further, fewer patients reported Covid-19 side effects during their 4-week follow-up appointment,” he added.
The investigators stressed that while the results were extremely promising, only randomized placebo-controlled studies can serve as basis for clinical decisions.
“We entered the second phase of the study and are actively recruiting patients”, explained Nahmias, noting that two Phase 3 studies are already being conducted in running South America, the United States (NCT04517396) and Israel (NCT04661930).
Reference
Metabolic Regulation of SARS-CoV-2 Infection. Yaakov Nahmias, et al. Research Square
DOI: https://doi.org/10.21203/rs.3.rs-770724/v1
Researchers start new investigation into Long Covid core outcome set
, /in Corona News, E-News /by panglobalThe World Health Organization (WHO) recently called on countries to prioritise recognition, rehabilitation and research for the consequences of Covid-19, and the collection of standardised data on Long Covid. They proposed the term “Post Covid-19 Condition” should be used for people living with Long Covid.
A significant portion of people diagnosed with Covid-19 subsequently experience lasting symptoms including fatigue, breathlessness and neurological complications months after the acute infection. However, the evidence for this condition is limited and based on small patient cohorts with short-term follow-up.
Core outcome set
There is an urgent need for the development of a core outcome set (COS) to optimise and standardise clinical data collection and reporting across studies (especially clinical trials) and clinical practice for this condition. With this in mind, clinical research communities and people living with Post Covid-19 Condition have come together to respond to this emerging global healthcare crisis.
An international group of experts in COS development and Post Covid-19 Condition research and clinical practice have developed a programme of research together with WHO, ISARIC (International Severe Acute Respiratory and emerging Infection Consortium), and patient partners to develop a Post Covid-19 Condition COS.
People living with Post-Covid-19 Condition
This project, Post-Covid Condition Core Outcomes, will start by surveying people living with Post-Covid-19 Condition, assess what outcomes matter and build a plan in two phases. The first phase will focus on what outcomes should be measured and the second phase will focus on how to measure these outcomes.
Researchers aim to complete the first phase (what outcomes to measure) in the summer of 2021 and the second phase (how to measure these outcomes) in 2022.
This project follows the COMET (Core Outcome Measures in Effectiveness Trials) Initiative’s standards and has been registered on COMET’s COS registry.
This plan is being globally publicised in its early stages so that research and patient communities are aware, thereby potentially avoiding any unnecessary duplication of work, and to let researchers planning studies, especially clinical trials, and clinicians know the anticipated time frame of these recommendations.