• News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
International Hospital
  • AI
  • Cardiology
  • Oncology
  • Neurology
  • Genetics
  • Orthopaedics
  • Research
  • Surgery
  • Innovation
  • Medical Imaging
  • MedTech
  • Obs-Gyn
  • Paediatrics

Archive for category: Featured Articles

Featured Articles

Dynamic contrast-enhanced magnetic resonance – new frontiers against cancer, but some way still to go

, 26 August 2020/in Featured Articles /by 3wmedia

Dynamic contrast-enhanced magnetic resonance (DCE-MRI) is a functional imaging technique. It consists of MRI scans coupled to the injection of a contrast agent. The latter leads to a decrease in relaxation time and provides extremely detailed characteristics of the micro-circulation of blood through tissue.
DCE-MRI assessments typically use the characteristics of signal intensity (SI) and time-intensity curves (TIC) regarding regions of interest (ROI). Early DCE-MRI efforts assumed a linear relationship between signal enhancement and contrast uptake. However, given that signal enhancement depends to a very great degree on intrinsic tissue and acquisition parameters, more complex models have been developed to control the effect of tissue characteristics such as the pre-contrast longitudinal relaxation time and the longitudinal or transverse relaxivities of the contrast agent.

Two-phased process
DCE-MRI is a two-phased process. Typically, at first, a T1-weighted MRI scan is conducted. This is followed by injection of the contrast agent, and then repeated acquisition of T1-weighted fast spoiled gradient-echo MRI sequences to obtain measurements of signal enhancement as a function of time.
The contrast agents are usually based on gadolinium and include gadoterate meglumine (Gd-DOTA), gadobutrol (Gd-BT-DO3A) gadoteriol and albumin-labelled Gd-DTPA.

Image acquisition and voxel comparison
Typically, 3D image sets are obtained sequentially every few seconds for up to 5-10 minutes. Shorter intervals allow for detection of early enhancement, although many researchers consider 10 seconds to be good enough. Longer intervals than this typically makes it tougher to identify early enhancement.
At the moment, the debate about the upper limit for intervals continues.
After image acquisition, the comparison of T1 values per voxel in each scan allows identification of permeable blood vessels and tumour tissue. Both spatial and temporal resolution must be adjusted to obtain an adequate sampling of the contrast enhancement over time, for each tissue voxel. The speed with which MRI images must be acquired necessitates larger voxels, so as to maintain adequate signal-to-noise ratios. Thus, DCE-MRI is often not as high in resolution as conventional T2-weighted sequences.

Range of biomarkers
Although DCE-MRI can be performed on conventional scanners (typically 1.5 T), it requires specialist image analysis to analyse the enhanced biomarker information which is to be provided. Such information includes tissue perfusion, vascularity, endothelial permeability, cellularity etc.
The biomarkers can be used to provide measurements of tumour vascular function and to improve the diagnosis and management of diseases in a variety of organs.

DCE-MRI in the brain
Clinical applications of DCE-MRI have principally focused on in-vivo characterization of tumours.
One of its earliest applications was to analyse blood vessels in a brain tumour, since the blood-brain barrier (BBB) blocks the contrast agent in normal brain tissue, but not in vessels generated by a tumour.
The contrast agent’s concentration is measured as it passes between the blood vessels and the extracellular space of tissue, and then as it returns to the vessels. In tissues with healthy cells or high cell density, the re-entry of the contrast agent into vessels is quicker since it cannot pass cell membranes. In tissues which are damaged or have a lower cell density, the agent is present in the extracellular space for a longer duration.

Numerous DCE-MRI studies on the brain have researched the correlation between BBB disruption and diseases such as acute ischemic stroke, pneumococcal meningitis, brain metastases, multiple system atrophy, multiple sclerosis and Type-II diabetes. One of the most exciting areas of research is the difference in signal intensity profiles over time between Alzheimer’s disease patients and controls.

Tumours and DCE-MRI
Elsewhere, researchers have also established the benefits of DCE-MRI for differential diagnosis of tumours in the head and neck region, such as salivary gland tumours and lesions in the jaw bone. DCE-MRI has also been used to demonstrate the nature of a lymphoma and making a differential diagnosis versus other lesions.
Prostate cancer is becoming a major area of application for DCE-MRI. One of the key limitations to standards of care in the past was the need for random prostate biopsies after discovery of elevated PSA values. This often led to discovery of inconsequential tumours. Meanwhile, the very same biopsies sometimes missed out on significant disease. DCE-MRI, in conjunction with PSA, can identify tumours likely to cause death if left untreated.

Assessing response to chemotherapy
DCE-MRI is also being used to assess responses to chemotherapy. One example of an ongoing project in this area is CHERNAC (Characterizing Early Response to Neoadjuvant Chemotherapy with Quantitative Breast MRI), which is funded by the Breast Cancer Campaign in the UK.
Elsewhere, DCE-MRI has shown promise in detecting cancer recurrence. For example, biochemical relapse after radical prostatectomy can occur in as much as 15 to 30percent of prostate cancer patients. Detection of tumour recurrence in such cases can be difficult due to the presence of scar tissue. Determining the precise site of recurrence since patients with isolated recurrence could benefit from less-invasive treatments, such as radiation to the resection bed.
Other areas for DCE-MRI application include cardiac tissue viability – for example, to evaluate sub-clinical fibrosis and micro-vascular dysfunction. Researchers have also shown its utility in measuring renal function and partial/segmental liver function.

A full spectrum of methods
In general, the analysis of DCE-MRI is based on a full spectrum of methods from the qualitative to quantitative, with an intermediary semi-quantitative approach.

Qualitative analysis
Qualitative analysis is visual and depends on clinical experience and expertise. It assumed that tumour vessels are leaky and more readily enhance after IV contrast material is expressed. As a result, DCE-MRI patterns for malignant tumours show an early and rapid enhancement of the time-intensity curve (TIC) after injection of the agent, followed by a rapid decline. On the other hand, normal tissue shows a slower and steadily increasing signal after agent injection.

Quantitative analysis
Quantitative analysis is based on the pharmacokinetics of contrast agent exchange. It is complex, but allows for a degree of comparability. The limitation is due to a lack of standards. However, better and wider use of software has led to a growing consensus on approaches to quantitative analysis of DCE-MRI data.
One of the most widely used tools is the Toft and Kermode (TK) model, which is showing considerable promise in predicting and monitoring tumour response to therapy.

TK provides data about the influx forward volume transfer constant, KTrans, from plasma into the extravascular-extracellular space (EES). Ktrans is equal to the permeability surface area product per unit volume of tissue, and represents vascular permeability in a permeability-limited situation (high flow relative to permeability), or blood flow into tissue in a flow-limited situation (high permeability relative to flow). KTrans is known to be elevated in many cancers.

Pharmacokinetic modeling for analysing DCE-MRI dates to the early 1990s, and was followed by a consensus paper at the end of the decade ( Tofts P.S., Brix G., Buckley D.L., Evelhoch J.L., Henderson E., Knopp M.V. Contrast-enhanced T 1 -Weighted MRI of a diffusible tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging. 1999′).
Over the years, improvement of imaging techniques (e.g. higher temporal resolution and contrast-to-noise ratio) and greater knowledge of the underlying physiology have catalysed development of more complex pharmacokinetic models.
The TK model, for example, had been developed for measuring BBB (blood-brain barrier) permeability, and overlooked the contribution of the plasma to total tissue concentration. However, as the model gained popularity in assessing tumours throughout the body, vascular contributions to signal intensity were also included.

Semi-quantitative models
The semi-quantitative model seeks to fit a curve to data. Like the visual/qualitative, this approach also assumes early and intense enhancement and washout as a predictor of malignancy. However, semi-quantitative analysis also calculates a variety of dynamic curve parameters types after initial uptake, such as the shape of the time-intensity curve (TIC), the time of first contrast uptake, time to peak, maximum slope, peak enhancement, and wash-in and washout curve shapes.
Broadly speaking, there are three types of curve: Type 1 (persistent increase), Type 2 (plateau) and Type 3 (decline after initial upslope). One of the most attractive features of the semi-quantitative model is its relative simplicity in using parameters to differentiate malignant from pathologic but benign tissue.
For example, in the head-and-neck region, a rapid increase in TIC (fast wash-out pattern) indicates a strong possibility of Warthin’s tumour – a benign, sharply demarcated tumour. A persistent increase suggests the possibility of pleomorphic adenoma. A plateau pattern with a slow washout is characteristic of both a malignant tumour and adenoma.

In spite of enthusiasm about the semi-quantitative approach, it cannot be generalized across acquisition protocols and sequences as well as several other factors which impact on MR signal intensity. In turn, these affect curve metrics, such as maximum enhancement and washout percentage. Differences in temporal resolution and injection rates can also change the shape of wash-in/washout curves, making comparison difficult. Finally, such descriptive parameters provide no physiologic insights into the behaviour of the tumour vessels.

The limitations of DCE-MRI
DEC-MRI itself faces some major limitations. Firstly, there is a lack of standardization in DCE-MRI sequences and analysis methodology, making it difficult to compare published studies. In general, shorter acquisition times lend themselves to more comparability.
One frequent problem is movement by the patient and organ motion (e.g. in the gut, the kidney, bladder etc.). Since a DCE-MRI study procedure is over 5 minutes, there can be considerable misregistration between consecutive imaging slices, leading to noise in the wash-in and washout curves, and problems fitting pharmacokinetic models to the curve.
New DCE-MRI postprocessing software seeks to correct this by automatically repositioning sequential images for better alignment. However, these too do not use common algorithms to process the data and generate parametric maps and can show differences – e.g. in tumour vascularity. To enable further investigation of the value of DCE-MRI of the prostate, the technique of DCE-MRI and the pharmacokinetic model used to analyse it must become more standardized.

One of the most serious problems with DCE-MRI, however, is its non-specificity which can lead to to both false negatives and false positives.
Other sources of uncertainty in DCE-MRI studies include a lack of data. For example, one typical assumption is fast water exchange between compartments in spite of suspicions about the influence of restricted water exchange. Indeed, many quantitative models disregard intracellular space since it is assumed that there is no contrast media exchange. However, others have pointed out that water itself can exchange between the cell and the extracellular space, thereby influencing signal changes in the extracellular space. This is clearly an areas which calls for more study.
Further research is also required in areas such as relaxivity values for a contrast agent, field strength and tissue/pathology. Currently, relaxivity across tissues and compartments is generally assumed to be uniform.

To conclude, DCE-MRI is a significant and promising diagnostic modality. However, for most clinical applications, it cannot be used on a standalone basis, regardless of curve shape or intensity of enhancement. DCE-MRI needs to be viewed in the context of other MRI parameters such as diffusion-weighted MRI and MR spectroscopic imaging as well as T2-weighted MRI.

https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:46Dynamic contrast-enhanced magnetic resonance – new frontiers against cancer, but some way still to go

Imaging: the new frontier for clinical decision support

, 26 August 2020/in Featured Articles /by 3wmedia

The clinical decision support (CDS) system is one of the most exciting areas of healthcare IT. It leverages state-of-the-art IT tools ranging from data-mining algorithms to complex neural networks, and seeks to address one of healthcare IT’s biggest challenges – Big Data. For its proponents, CDS is a means to standardize clinical practice with a framework of evidence-based clinical rules.

Information overload and CDS
In a recent publication, Ken Ong, Chief Medical Informatics Officer of New York’s Queens Hospital, discusses the importance of CDS tools and processes to modern medical practice. He cites the quadrupling in medical journal articles from 200,000 in 1970 to over 800,000 in 2010, and calculates that given the current rate of publication in medical literature, a medical school graduate reading two articles every day ‘would be 1,225 years behind at the end of the first year.’ Another interesting figure concerns national clinical care guidelines for preventive services and chronic disease management. Ong writes that were physicians to follow all these, alongside doing their routine tasks for a typical patient panel, they would need a workday of 21.7 hours. His conclusion is simple: ‘Information overload coupled with a paucity of time suggest the value of CDS and greater team-based care.’

Reduction of inappropriate imaging
In its radiology incarnation, a CDS platform provides evidence-based information and patient-tailored tools to make imaging decisions at the point of care. The system is optimized within clinical workflow and allows a physician to quickly determine what type of imaging exam is needed for a patient with specific symptoms, effectively steering choices away from low-yield exams. This ensures the appropriate use of radiation, while avoiding unnecessary exposure. It also evidently save costs.
In practical terms, radiology CDS is provided as an interface to a computerized physician order entry (CPOE) system. In February 2012, The Journal of the American College of Radiology’ published results of a pilot study at Boston’s Brigham and Women’s Hospital on a web-enabled (CPOE) system with embedded imaging decision support. The project was run between 2000 and 2010 across the hospital’s outpatient, emergency and inpatient departments and established significant increases in meaningful use for electronically created studies (from 0.4 percent to 61.9 percent) and for electronically signed studies (from 0.4 percent to 92.2 percent).
Also in 2012, the American College of Cardiology announced the results of a two-year old initiative known as Imaging in FOCUS’, which aimed at reducing inappropriate use through CDS software. The initiative had considerable success, with participating practices reporting a sharp reduction in inappropriate ordering, by close to 50% in one year (from 12 to 7 percent).

Laggard in healthcare IT

In spite of this, CDS has until recently been limited to prescriptions, laboratory tests and treatment protocols, with imaging described as ‘a laggard on the health IT technology adoption curve.’
In the US health IT investments of higher priority to hospitals-certified electronic health record (CEHRT) technology needed to comply with the federal meaningful use (MU) programme, better security systems, and ICD-10 conversion software-have superseded investments in radiology CDS.

A boost from PAMA

However, radiological CDS systems received a boost in the US after passage of the Protecting Access to Medicare Act (PAMA) in April 2014. Although much of its focus is on physician reimbursement, PAMA also provides incentives to change physician behaviour with regard to imaging. The key clause in PAMA is Section 218 which encourages the development and use of clinical practice guidelines for ordering imaging tests. These guidelines, in turn, form the core of radiology decision support tools.
PAMA closes a gap in the meaningful use clauses of the EHR Incentive Reimbursement Program, which has been targeted at the electronic health record.
EHR design does not accommodate radiology workflow and processes – and therefore had little relevance for radiologists so far. This is what PAMA seeks to address.
The impact of PAMA on CDS is likely to be major, after it takes effect. The deadline was originally set for January 1 next year, but has since been shifted to ‘approximately the summer of 2017,’ in order to give more time to healthcare providers to get used.
After PAMA is in force, physicians in their office, in the hospital outpatient or emergency department settings will have to consult appropriate use criteria (AUC) when ordering CT, MRI and nuclear medicine-based imaging such as PET (X-ray, fluoroscopy, and ultrasound exams are excluded). PAMA explicitly states that physicians offering diagnostic interpretation will be reimbursed by Medicare only for claims which confirm that a certified CDS system was used.

ACR Select: appropriate use for imaging
Although there are several initiatives, the radiological CDS system which seems most likely to become a global reference is ACR Select. This system, which debuted at the Radiological Society of North America (RSNA) Annual Meeting in 2012, was developed jointly by the American College of Radiology (ACR) and National Decision Support Company (NDSC). ACR Select is designed to ‘reduce inappropriate use of diagnostic imaging’ by using CDS software to track AUC criteria.
ACR Select offers a database with more than 130 topics and 614 variant conditions that provide evidence-based guidance for the appropriate use of all imaging procedures. More than 300 volunteer physicians, representing more than 20 radiology and non-radiology specialty organizations, participate on the ACR expert panels to continuously update these guidelines.
An ACR Select interface is provided for computerized physician order entry (CPOE) applications. The interface pops up when a physician requests an imaging exam for a patient. The physician is required to input information on the latter’s clinical condition, along with the imaging exam sought. ACR Select then gives an appropriateness score, accompanied by a colour code – green, yellow, or red which instructs whether a study is clinically indicated based on the ACR’s appropriateness criteria.

Europe sees no need to reinvent the wheel
Developments in the US have spilled over into Europe.
In autumn 2013, Hospital Clinic of Barcelona started to test ACR Select, with the aim of adapting its appropriateness criteria to European standards of practice. Shortly afterwards, a team of senior radiologists began work developing Europe-specific and evidence-based imaging referral guidelines. These were based not only on translating the US criteria into Spanish, but also adapting them to local clinical situations, diagnostic codes, and country-specific practices. The target was ‘to cover around 80 percent of requests in daily practice by reviewing the clinical scenarios, indications and recommendations’ for a large range of topic groups.
The embryonic system was subsequently tested at 80 general practitioners in Hospital Clinic Barcelona’s network. The GPs were provided feedback on how their requests for imaging exams matched appropriateness criteria. The tests were then rolled out to other specialists, including emergency physicians.

At the European Congress of Radiology (ECR) in Vienna in March 2014, Dr. Lluis Donoso Bach, director of the diagnostic imaging centre at Hospital Clinic of Barcelona, pointed out that the economic crisis had led radiologists looking for innovative ways ‘to do more with less.’ Europe, he said, could benefit by adapting ACR Select to its needs, and avoid going through an exhaustive process of creating its own criteria for appropriate imaging.
In the months to come, some ten pilot projects to adapt ACR Select to Europe were launched in various other European countries, including the United Kingdom, Germany, Italy, Spain, Portugal, and Sweden.

Conflicts in European models, global ambitions
In retrospect, one of the most persuasive arguments swinging the choice of radiology CDS towards ACR Select consisted of conflicts between emerging European CDS models. The ESR had first sought to develop a CDS system based on guidelines from the French and British radiological societies. However, preliminary work soon identified considerable discrepancies’ between the two sets of rules and this led the ESR to turn to ACR Select.
Yet another advantage of a joint Euro-American approach is acknowledged by the ESR. It gives ‘a global dimension for the ACR and ESR’s common vision of establishing a global set of imaging referral guidelines in the future.’ As Pharma Times’ noted, the collaboration is ‘a decisive first step towards harmonizing AUC for imaging at a global level’. It added that interest in the system from Australia and Asia suggests ‘that the radiology field is indeed headed towards a globalization of ordering guidelines.’
In March 2016, National Decision Support Company (NDSC) established a European subsidiary in Vienna, home of the ESR. Outside Europe, one of its first targets is the Middle East.

ESR launches Europeanised prototype
In March 2015, the European Society of Radiology (ESR) formally launched a prototype of the adapted US CDS system, which it called iGuide. The launch took place at the ECR in Vienna. During the occasion, Dr. Lluis Donoso Bach also took over as ESR President, with his term lasting until 2016.
During the launch, Erika Denton, National Clinical Director for Diagnostics with NHS England, discussed some figures regarding the localization and adapting of ACRSelect into the ESR iGuide. There were 16% rating changes – that is, changes in the ratings attributed to an orderable imaging exam; 9 % category changes – that is, changes in the imaging modality being recommended in a given clinical scenario.

iGuide
iGuide makes evidence-based, imaging referral guidelines available and easy to use across Europe. It is designed as a user-friendly system available at the point of care, and can be stand-alone or integrated with ordering systems and linked to electronic health records. As with ACR Select, it aims to ensure ‘a simpler, faster and reliable clinical workflow.’
iGuide also retains an element of flexibility. Users can localize recommendations according to their needs starting from the evidence-based core. In addition, the ESR iGuide can be adapted to users’ needs and institutional settings, for example by taking into account the availability of certain types of imaging equipment. This is not only relevant for Europe, but across other heterogeneous global markets, and will be crucial to eventually make the Euro-American effort an international success.
The ESR plans to continuously update iGuide to provide users with the latest evidence, instead of publishing a complete overhaul every few years.

https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH107_CDSS-imaging_Tosh_thematic.jpg 244 300 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:55Imaging: the new frontier for clinical decision support

Sure edge, Sure protection and Sure identification.

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/47021_IHE_MayJune2016.jpg 1000 695 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:56Sure edge, Sure protection and Sure identification.

Patient Monitoring & Life Support, In-Vitro Diagnostics, and Medical Imaging System

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/47018_IHE_1610_MINDRAY.jpg 989 700 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:49Patient Monitoring & Life Support, In-Vitro Diagnostics, and Medical Imaging System

Leading hospital in Cyprus offers Digital Breast Tomosynthesis

, 26 August 2020/in Featured Articles /by 3wmedia

YGIA Polyclinic’s Radiology Department has been operating for 27 years and its staff is actively involved in ongoing clinical research and training to ensure the best possible services to all patients. A year ago, it embarked on setting up a breast imaging unit equipped with state-of-the-art technology, culminating in the installation of the Hologic Selenia Dimensions DBT system.  
Dr. Annie Papoutsou, Head of the X-ray Department gives us the full picture.

How has your hospital expanded in recent years?
In 2007, after major renovations and an extension of its building facilities, the YGIA Polyclinic private hospital boosted its capacity to 152 beds, extended the number of operating theatres to 12, established and extended the capabilities of its Clinical Laboratory Department, Radiology Department (X-ray, Mammog, Fluoroscopy, MRI, CT, Ultrasound), produced a multi-dynamic Intensive Care Unit (ICU), Obstetrics & Gynecology, and Pediatrics Departments. Furthermore, from mid June 2012, a state-of-the-art Cardio-Vascular Catheterizations Centre was established at the hospital offering the only 24-hour acute percutaneous coronary intervention (PCI) service in Cyprus. Moreover, the hospital has a range of fully equipped ambulances working 24 hours in order to be able to best respond to emergencies.

What type of equipment is used by your department?
Most of our X-ray rooms use the latest DR digital detectors providing superior quality images almost instantly, and are linked to an enterprise-wide fully integrated RiS/PACS.
Last year we organized a breast imaging unit, equipped with the latest technology, FFDM Hologic Selenia Dimensions, a GE ultrasound  with strain and shearwave elastography and a Hitachi ultrasound with high frequency  linear probe.
In our department we performed  more than 90,000 exams yearly.
What was the rationale for selecting the Hologic Selenia Dimensions system?
The decision was based on the special features offered by the Selenia Dimensions; these include:

  • 2D imaging or combo mode (2D+3D) imaging in the same  compression.
  • Exceptionally sharp  images with minimal dose.
  • Streamlined workflow.
  • Ergonomic design for comfort and  ease of operation.
  • We believe that it offers the best technology available.

What are the advantages of Digital Breast Tomosynthesis?
The use of Digital Breast Tomosynthesis in breast screening enables us to find more invasive cancers than conventional 2D mammography alone.
The masses, distortions and asymmetric densities are better visualized with the Selenia Dimension.
But also it can reduce the costs associated with unnecessary recalls and it can reduce the incidence of negative biopsies.

Has the number of exams been affected by the adoption of DBT?      
Since the installation the number of mammography exams has increased up to 50%.
The recalls rate has decreased and also additional views have decreased.

When did you decide to acquire the C-View software and what are the benefits?
C-View software was installed from the first  day of the equipment installation, giving us the possibility of eliminating the need for conventional 2D exams after 6 months. The combined tomosynthesis and C-View exam makes lower patient radiation dose possible. Tomosynthesis exams with C-View software offer a patient dose similar to a 2D  only exam with  superior clinical performance for all breast types.

You are also using the Affirm biopsy device –what is the typical biopsy procedure followed in your department?
Up until now we are using the Affirm stereotactic biopsy device and in the next few days we are going to install the Affirm stereotactic tomosynthesis biopsy device to target lesions seen only with tomosynthesis. The typical biopsy procedures followed in our department are the biopsy under  the stereotactic  guidance and hookwire localization for subtle masses clusters of microcalcifications and architecture distortion.

What  do you see as the next step for improving the performance of your department?
Installing I-view with the contrast media.
I-View is a contrast-enhanced mammography technique that may be a viable alternative to breast MRI in performing contrast agent breast imaging. It offers certain advantages over MRI, including reduced cost and shorter procedure times. The imaging combination of contrast enhanced 2D imaging (CE2D) along with a 3D tomo scan, gives additional information beyond a CE2D examination alone, and may allow localization and morphologic evaluation of an enhancing lesion, further increasing the value of the CE2D procedure.

https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH103_Hologic_image4-copie.jpg 259 300 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:31:01Leading hospital in Cyprus offers Digital Breast Tomosynthesis

Hologic is reinventing 3D breast imaging

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:35Hologic is reinventing 3D breast imaging

Medical Fair Thailand, 6-8 Sept, Bangkok

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:43Medical Fair Thailand, 6-8 Sept, Bangkok

Anesthesiology and ultrasound today

, 26 August 2020/in Featured Articles /by 3wmedia

Since the last decade, ultrasonography (US) has become an essential clinical tool in anesthesiology, intensive care and emergency medicine, improving both safety and patient comfort. US indeed allows an extremely wide use for both bedside examination and technical procedures in a way that was previously not possible. For example, this technology is useful for regional anesthesia [1], but also for placing central venous access with a reduced risk of complications, for assessment of gastric emptiness [2], or for an early assessment of severe trauma patients [3]. Recent reports even suggest that US may be interesting in airway assessment and in predicting difficult airways [4], or to assess lung function and conditions such as pneumothorax, pulmonary edema [5] etc. It is no longer possible to work as an anesthesiologist without having immediate access to bedside high quality ultrasonography.

Among various techniques of regional anesthesia, peripheral nerve blocks (PNBs) consist in anesthetizing only a single limb or a specific anatomical area. A huge body of scientific evidence demonstrates that PNBs provide major interests during perioperative patient care in many surgical specialties. As a matter of fact, PNBs are even frequently superior to general anesthesia. However, PNB techniques require expertise and technical skills, since it is necessary to administer the local anesthetic in close vicinity of nerve trunks or nerve roots in order to interrupt the nerve impulses.
To summarize, the overall safety in regional anesthesia requires the ability to avoid injecting local anesthetic intraneurally as well as intravascularly, and to reduce the injected doses. This is where US plays a role.
Ultrasound-guided regional anesthesia has allowed increasing safety standards and reducing complications as never before [6]. When using US guidance the anesthesiologist is able to identify the various anatomical structures and adapt the procedure to inter-individual anatomy. Furthermore, US guidance allows real-time needle guidance and assessment of local anesthetic spread around neural structures, which was not allowed by previous PNB techniques that were using nerve stimulation [7]. Visualizing the spread of local anesthetic also enables early diagnosis of intravascular or intraneural injection. Furthermore, there is now scientific evidence that US guidance decreases the number of vascular punctures as well as reduces the injected volumes of local anesthetics while increasing the overall success rate of PNBs. Moreover, USGRA improves patient comfort [8].

If ultrasound devices designed for the operating theatre must provide high quality images, all usual imaging modes and at least two probes of compact size enabling the ultrasound systems to be mobile, the recently released EXAPAD, manufactured by the French ECM company, opens a brand new concept of mobile US devices that are designed no longer for the radiologist or cardiologist, but for anesthesiologists and emergency physicians. It features many unique and original tools that make this device really innovative and exceptionally adapted to the operating room or intensive care environment. The EXAPAD comes with a nice and sober look, as a ‘big’ 15′ tablet. It is as easy to use as a smartphone allowing the user to swipe from one menu to another. It is indeed, the first US device having been specially designed for use in intensive care, operating room or in emergency situations where the physician frequently works in a narrow space, surrounded by many devices and under sterile conditions. Therefore, the size and mobility of the EXAPAD are of tremendous importance. For example, the EXAPAD may be orientated either vertically or horizontally according to preference by simply rotating the screen.

The EXAPAD’s new features, such as the IPAD remote control and the voice control of all major settings (i.e. gain, depth, frequency, focus) allow the physician to change the settings without the need to touch the screen. This is highly interesting during sterile procedures (i.e. PNBs or central venous access placement). Another advantage is the fact that the central unit is totally waterproof and its screen can be cleaned.

The IPAD remote control also displays the US image. At the bedside, this tool is not a gadget, but on the contrary offers a real improvement in comfort for the anesthesiologist, since the EXAPAD central unit may

be located ahead of the patient, providing full performance of the system on the IPAD while enabling the user to change the settings and view the image on the IPAD screen. The EXAPAD also offers the possibility, via the Internet or a local network, to share US images in real time for teaching purposes or for remote use of the system.

References
1. Chan VW, et al. Ultrasound guidance improves success rate of axillary brachial plexus block. Can J Anaesth. 2007; 54:176-82.
2. Bouvet L, et al. Clinical assessment of the ultrasonographic measurement of antral area for estimating preoperative gastric content and volume. Anesthesiology. 2011; 114:1086-92.
3. Wiel E, Rouyer F. From E-FAST to clinical echography. Ann Fr Anesth Reanim. 2014; 33:149-50.
4. Pinto J, et al. Predicting difficult laryngoscopy using ultrasound measurement of distance from skin to epiglottis. J Crit Care. 2016; 33:26-31.
5. Moreno-Aguilar G, Lichtenstein D. Lung ultrasound in the critically ill (LUCI) and the lung point: a sign specific to pneumothorax which cannot be mimicked. Crit Care. 2015; 19:311.
6. Barrington MJ, Kluger R. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade. Reg Anesth Pain Med. 2013; 38:289-97.
7. Macaire P, Singelyn F, Narchi P, Paqueron X. Ultrasound- or nerve stimulation-guided wrist blocks for carpal tunnel release: a randomized prospective comparative study. Reg Anesth Pain Med. 2008; 33:363-8.
8. Bloc S, et al. The learning process of the hydrolocalization technique performed during ultrasound-guided regional anesthesia. Acta Anaesthesiol Scand. 2010; 54:421-5.

The author
Xavier Paqueron, M.D., Ph.D.
Centre Clinique
16800 Soyaux, France

https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH108_ECM_Exapad-piqu2_crop.jpg 300 240 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:52Anesthesiology and ultrasound today

Artificial intelligence and radiology – threat or tool ?

, 26 August 2020/in Featured Articles /by 3wmedia

In spite of alarm bells that artificial intelligence (AI) would decimate the radiology profession, a host of barriers – both technical and regulatory – make this unlikely to happen for the foreseeable future. Instead, over the coming decade, AI is at best likely to help radiologists do their jobs more quickly and lead to improved patient outcomes.

From CAD to AI
AI in radiology, in some senses, has tended to raise the same level of expectation as computer-aided detection (CAD) did for the profession in the 1990s. Indeed, there is now a distinction between computer aided detection which reduces observational oversight and false negatives in interpreting medical images, and computer aided diagnosis (also called CAD) – by virtue of which software is used to analyse a radiographic finding to estimate the likelihood of a specific disease process (e.g. a benign versus malignant tumour).
As a result, in spite of tens of thousands of machine-learning algorithms, there is little connection to clinical application. Most remain confined to the realms of research.

The Black Box barrier
Radiologists, for example, use visual pattern matching. However, few object recognition algorithms have yet been tested on gray-scale images, such as those widely used in radiology.
Though specific algorithms could in principle be tailored for specific tasks, they use different assumptions and targets, and often are written to function in different modalities. Consolidating a set of algorithms into one package and then using this to underpin image or data analysis is not feasible.
In effect, the key problem with CAD detection is its black box’ nature, which means they cannot explain why an object has been identified as abnormal. Many users remain suspicious about sharing the already-grey zone between detection and diagnosis with a machine, which only provides probabilities.

Sensitivity and specificity
The above kind of issues also hinder AI. Nevertheless, the technology is rapidly evolving and may offer some solutions to new challenges.
Like radiologists, AI faces the twin pulls of sensitivity and specificity, between false positives which overcall disease and false negatives which undercall it. It is clear that it will favour sensitivity over specificity.

Technology creates its own momentum
In recent years, radiologists have been forced to cope with an explosion in the stock of medical images, thanks to modern imaging technologies and PACS storage capacity. In the UK, for example, almost 5 million CT scans are performed per year by the NHS. At the upper end, a single pan scan’ CT of a trauma patient, for example, renders about 4,000 images. Indeed, a busy radiologist can read about 20,000 studies a year.
To deal with this burden – both physical and visual – radiologists clearly need help. AI seems to have become one of the most optimal.
There is, nevertheless, some irony here. Technology, in this case consisting of new imaging modalities, has led to an increase in the workload on radiologists. This is in spite of the fact that the disease burden has remained more or less the same, as has the prevalence on imaging of clinically significant pathology. However, the growth of imaging stock has led to a sharp rise in the presence of detectable and potentially significant pathology. Radiologists therefore face the massive challenge of finding ways to use the latter. This is where yet another technology, AI, steps in.

Industry push combines with radiologist pull
While the need to handle the imaging data explosion will see radiologists pulling’ AI, industry has chosen radiology to push’ for clinical validation. There are two reasons for this: the sheer volume of the imaging data and its continuing growth make it a huge market, while the fact that it is stored in structured and computer-readable DICOM format means it is a ready one.

AI’s own dynamics in change
Meanwhile, AI itself has seen some changes. Although, fuelled by science fiction and Hollywood, the popular imagination associates AI with self-awareness, what we really still have is more accurately machine intelligence. The implications of even such a toned-down definition should, however, not be under-estimated. Neither should some recent developments.

From Deep Blue to AlphaGo
In the late 1990s, IBM’s Deep Blue supercomputer defeated grandmaster Garry Kasparov in a chess game. In March 2016, Google DeepMind’s AlphaGo defeated Lee Sedol, a 9th level Go grandmaster 4-1. For AI experts, the AlphaGo win is far more impressive than Deep Blue because Go is less rules-bound than chess.
Due to these constraints, Deep Blue analysed millions of potential combinations and outcomes, in what IT professionals call brute force’ calculation. No computer can yet achieve this with Go, which according to Business Insider’ (March 10, 2016) has ‘more than 300 times the number of plays as chess. Alongside continuous scenario analysis, top Go players require both experience and intuition’. This is why AlphaGo’s win was seen as a paradigm shift in AI.

Deep learning
Unlike Deep Blue’s brute force, AlphaGo used a programming method called deep learning’, with so-called neural networks, which are far more similar to human thought processes than traditional computing. Rather than seeking to map out every possible move combination, deep learning (DL) is a relatively-unregulated process by which a computer figures out why something is what it is, after being shown several examples. It uses a large but still-finite sample of data, draws conclusions from that sample, and then, along with some human inputs, repeat the process over and over again, to simulate millions of games into a decision-making system.
Technically, AlphaGo’s deep neural networks consisted of a 12-layer network of neuron-like connections with a policy network’ to select the next move and a value network’ to predict the winner of the game.

A new benchmark

Neural network-based deep learning is now the benchmark for AI in radiology, with IBM’s poster child Watson leading the way. At the 2015 RSNA meeting, Watson showed its capacity to find clots in brightly shining pulmonary arteries.
Watson, however, has a DL rival in Australia’s Enlitic, which has developed a lung nodule detector claimed to achieve positive predictive values that are 50percent higher than those of a radiologist. As the detection model analyses images, it learns from those images. It not only finds lung nodules, it also provides a probability score for malignancy. Enlitic is now conducting a trial on a model to detect fractures using X-ray images overlaid with a heat map to highlight their location within a conventional PACS viewer. The clinical application will eventually encompass X-ray, CT, and possibly MRI. At the moment, Enlitic is working to incorporate ACR guidelines into it.
Although both Watson and Enlitic use deep learning, the approach is different. Watson seeks to understand’ a disease, Enlitic simply seeks to find source problem data, solve it, and produce a diagnosis.

Another DL developer is MetaMind, since last year part of CRM (customer relationship management) giant Salesforce.com. MetaMind has an alliance with teleradiology provider vRad to identify key radiology elements associated with critical medical conditions, especially in the latter’s focus area of emergency departments (EDs). The first tool to emerge from the partnership was an algorithm to identify intracranial hemorrhage (ICH), often seen in ED patients and requiring prompt action. vRad, which has put the algorithm into a beta phase that will allow it to collect data to demonstrate outcomes, is adapting it to identify other critical conditions, such as pulmonary embolisms and aortic tears.

Swarm AI
Apart from deep learning, radiology is also seeing the first successful experiments with swarm AI, which helps form a diagnostic consensus by turning groups of human experts into super experts. The technology borrows from nature, which sees species accomplishing more by participating in a flock, school or colony (a swarm’) than they can individually. One study, published in Public Library of Science (PLOS)’, stated that swarm intelligence could improve mammography screening and has the potential to improve other types of medical decision-making, ‘including many areas of diagnostic imaging.’ Another study found that accuracy in distinguishing normal versus abnormal patients was significantly higher with swarm AI than the radiologists’ mean accuracy.

Challenges ahead
Nevertheless, there is much more to be achieved before AI becomes an everyday tool in radiology.
The biggest roadblock will consist of regulators, who are unlikely to sanction the use or marketing of intelligent’ machines. In the US, as first of their kind, they lack the predicate devices needed to be regulated under the FDA’s 510(k) rules, and it would take decades to get approval for each algorithm.
A second issue is the time and cost to get datasets to fine-tune the algorithms. Watson, for example, has a backlog of 30 billion medical images to review.
Thirdly, the algorithms would also raise significant legal and ethical issues, such as knowing when they could be trusted.
Finally, even were such machines to become available, referring physicians are unlikely to accept conclusions or interpretations drawn solely by them.
The scale of such challenges has already been seen by developers of computer-aided detection (CAD) algorithms – and the change of CAD to detection’ rather than diagnosis’, as it was called in the early days.

Need and benefit, reality checks
In short, for now, radiologists need AI just as much as AI needs them.
Radiologists will have to begin to work with AI, both to improve the technology itself and to reduce routine, repetitive tasks such as confirming line placements and looking at scans to find nodules.
On its part, AI is likely to become an increasingly smarter tool, to improve efficiency, for example by prioritizing cases, putting thresholds on data acquisition, improving workflow by escalating cases with critical findings to the worklist of a radiologist and providing automatic alerts to both radiologists and other concerned clinicians.
In the longer term, DL algorithms are likely to be trained to recognize disease patterns, identify, outline and measure nodules and possibly highlight suspicious areas in images. This is likely to be followed by the use of DL-based AI as clinical decision tools, for example to help referring physicians select or narrow choices of scans, based on clinical observations in an EMR. Such steps would not only free up resources for additional testing but also improve patient care, thereby making radiologists even more integral in the care management process.

In the final count, a resonant reality check on AI has been provided by Eliot Siegel, MD, professor of radiology at the University of Maryland. He has offered to wash the car of anyone who develops a program than can segment adrenal glands on a CT scan as reliably as a 7-year-old.

https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH138_Tosh_artificial-intelligence-radiology_thematic_crop.jpg 256 300 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:37Artificial intelligence and radiology – threat or tool ?

Dose reduction in medical radiation – regulators, industry and healthcare professionals seek common front

, 26 August 2020/in Featured Articles /by 3wmedia

Ionizing radiation, from the sun and even the earth, is a daily fact of life. There is little that can be done about this, except to stay away from too much sunlight and protect the skin with sunscreens. On the other hand, people are also sometimes exposed to radiation for medical reasons – such as diagnostic X-Rays or CT scans, or a range of interventional radiology procedures. These procedures offer tremendous benefits for patients and for healthcare providers. The evidence for such benefits has become indisputable in recent years, and covers a wide range of diseases and conditions.

Medical imaging has profound impact on patient management
The American Journal of Roentgenology’ reported in 2011 that abdominal surgeries reduced significantly after CT scans. Physicians planned to admit 75percent of patients to hospital before CT. This level was changed to hospital discharge with follow-up in 24percent of patients after CT. The conclusions of the researchers, from Massachusetts General Hospital, were conclusive: CT ‘changes the leading diagnosis, increases diagnostic certainty, and changes potential patient management decisions.’
Massachusetts General Hospital was indeed one of the first institutions to study the impact of medical imaging. In 1998, a team from the hospital reported that CT was 93-98percent accurate in confirming or ruling out appendicitis. The condition accounted for 1 million patient-days per year in the US, with a similar level eventually found to have other conditions.

From emergency rooms to lung cancer
More recently, the New England Journal of Medicine’ published a study on non-invasive coronary CT imaging in the emergency room. The study found that out of the 8 million visits per year to emergency rooms by patients with chest pain, only 5-15percent were eventually found to be suffering from heart attacks or other serious cardiac diseases. As many as 60percent of patients faced unnecessary admission and testing to exclude acute coronary syndrome.
Meanwhile, it has also been reported that low-dose CT screening reduced lung cancer deaths by at least 20percent in a high risk population of current and former smokers aged 55 to 74. These findings were reported by the National Lung Cancer Trial in the US.

Fight against Alzheimer’s, speeding up clinical trials

In the future, medical imaging holds forth significant promise as a tool in the fight against diseases ranging from osteoporosis to Alzheimer’s, whose incidence is likely to grow sharply as the population ages.
Medical imaging also offers increasing promise as a surrogate endpoint in clinical trials, allowing measurement of the effect of a new drug far earlier than traditional endpoints, such as survival times or clinical benefit.

Concerns about over-use, some alarmist
Nevertheless, there are several concerns about over-use’ – especially for imaging accompanied by radiation such as CT. In the US, according to a June 2012 review in the Journal of the American Medical Association’, CT scans tripled in the period 1996-2010, corresponding to a 7.8percent annual increase. Although this was less than a near four-fold increase in MRI and a 30percent fall in nuclear medicine use, CT has been the target of sometimes emotive campaigns.
One good illustration of this was an Op-Ed in the New York Times’ on January 31, 2014. The article was titled ‘We Are Giving Ourselves Cancer.’ It opened with the observation that we are ‘silently irradiating ourselves to death,’ while its closing sentence urged finding ways to use CTs ‘without killing people in the process.’

The Times’ Op-Ed cited a British study which ‘directly demonstrated’ evidence of the ‘harms’ of CT, and it is here that its authors over-stretched their credibility. The study they referred to was published in Lancet’ in August 2012 and titled Radiation exposure from CT scans in childhood and subsequent risk of leukemia and brain tumours: a retrospective cohort study’. Its authors used data on 175,000 children and young adults and found that the cumulative 10-year risk was higher in relative terms, but translated into one extra case of leukemia and one extra case of brain tumour per 10,000 head CT scans.

ALARA and the principle of necessity and justification
In other words, while few would argue that there is no risk from radiation, it is clear that such risks are small and that even these small potential risks could be controlled further by reducing exposure to radiation.
Both industry and healthcare professionals are endeavouring to ensure that such a goal is achieved.
Manufacturers of CT and other radiation imaging equipment seek to keep exposure to radiation for both patients and medical staff to a minimum – and below their regulatory limits – by using the ALARA (As Low As Reasonably Achievable) principle to design their products. Key methods include use of the most dose-efficient technologies available and seeking to ensure that optimum scan parameters are used for a patient and examination type.
Meanwhile, in the clinical setting, doctors seek to ensure that radiation imaging examination is ordered only when absolutely necessary and justified, while radiographers optimize the radiation dose used during each procedure.

Safety, information and awareness
Since the mid-2000s, radiologists and medical physicists have taken steps to increase controls on radiation risks to patients. These have essentially focused on promoting the safe use of medical imaging devices, supporting informed clinical decision making and increasing patient awareness.
One of these initiatives is known as Image Gently, a collaborative initiative by radiology professional organizations and other concerned groups. Its target is to specifically lower radiation dose during the imaging of children.
A related initiative, led by the American College of Radiology (ACR) and the Radiology Society of North America (RSNA), is Image Wisely. This is essentially an awareness campaign whose goals are to eliminate unnecessary’ procedures and lower doses to minimal levels required for clinical effectiveness when necessary. One aspect of Image Wisely is collaboration between medical radiologists and manufacturers to improve performance of radiology equipment and allow physicians to make real-time assessments of whether radiation levels are acceptable.

Initiatives by professional societies
Such initiatives are closely supported by professional radiology societies. The ACR has developed Appropriateness Criteria (corresponding to the federal requirements on appropriate use) to assist referring physicians and radiologists in prescribing the best imaging examination for patients – based on symptoms and circumstances. One tool consists of the display of imaging options and associated radiation levels for a specific procedure. The aim is to reduce imaging examinations by assuring that the most suitable exam is done first.
In Europe, the European Society of Radiology’s flagship EuroSafe Imaging’ has the same objective, to maximize radiation protection and quality/safety in medical imaging. The initiative was launched at the European Congress of Radiology in 2014 and has so far attracted over 50,000 individual supporters (known as Friends of EuroSafe Imaging’). Over 200 institutions (industry and healthcare providers) have also endorsed the initiative.

Accreditation programmes
Accreditation programmes are also being targeted by the ACR and ECR, in order to assess facilities based on imaging competence, adherence to latest dose guidelines, and personnel training. Given the pace of technology development in imaging, certified radiology and nuclear medicine professionals are increasingly recommended or (in some cases) required to earn continuing education credits on radiation safety.
In Europe, the ECR has joined forces with the European Federation of Organizations for Medical Physics (EFOMP), the European Federation of Radiographer Societies (EFRS), the European Society for Therapeutic Radiology and Oncology (ESTRO), the European Association of Nuclear Medicine (EANM), as well as the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) on an EU-promoted radiation education project called MEDRAPET. The findings, published in 2014, revise the previous Radiation Protection 116 Guidelines on Education and Training.

The Bonn Call for Action sets roadmap for the future

Many of these initiatives have been inspired by a conference held in Bonn, Germany, at the end of 2012, which was sponsored jointly by two United Nations bodies – the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). The outcome of the conference, which was attended by participants from 77 countries, is known as the Bonn Call for Action, and aims to strengthen medical radiation practices into the 2020s.

The Bonn Call consists of ten major actions. These are described below:

  • To enhance implementation of the principle of justification. There is explicit emphasis on the use of clinical decision support (CDS) technology towards such a goal.
  • To enhance implementation of the principle of optimization of protection and safety. There is a specific call to ensure the establishment, use and regular updating of diagnostic reference levels for radiological procedures, including interventional procedures, and to develop and apply technological solutions for patient exposure records, harmonize dose data formats provided by imaging equipment and increase utilization of electronic health records.
  • Strengthen manufacturers’ role in contributing to the overall safety regime. This seeks to enhance radiation protection features in the design of both physical equipment and software, and to make these available as default features rather than optional extras.
  • Strengthen radiation protection education and training of health professionals.
  • Increase availability of improved global information on medical exposures and occupational exposures in medicine, with specific attention to developing countries.
  • Improve prevention of medical radiation incidents and accidents. One interesting facet here is a call to work towards including all modalities of medical ionizing radiation as part of a voluntary safety reporting process, with specific emphasis on brachytherapy, interventional radiology, and therapeutic nuclear medicine, in addition to external beam radiotherapy.
  • Strengthen radiation safety culture in healthcare.
  • Foster an improved radiation benefit-risk-dialogue.
  • Strengthen the implementation of safety requirements globally.
  • Develop practical guidance to provide for the implementation of the International Basic Safety Standards in healthcare globally.

Although some of the Bonn Call points are repetitive, the document is noteworthy in terms of setting a minimal set of common rules for a very wide range of stakeholders – manufacturers, health professionals and professional societies.

Point 6 seeks new work on effective’ dose
Point 6 of the Bonn Call is both ambitious and timely. Although the concept of effective dose’ (or effective dose equivalent) was introduced in the mid-1970s to provide a common framework for evaluating the impact of exposure to ionizing radiation via any means, technology’s uneven leaps have not made it easy to follow through. Data for doses by different radiographic imaging modalities used in radiation therapy are scattered widely through literature, making it difficult to estimate the total dose that a patient receives during a particular treatment scenario. In addition, interventional systems are often configured differently from diagnostic set-ups and imaging systems do not distribute radiation in similar ways. For example, planar kV imaging attenuates rapidly along the line of sight, while CT dose is uniformly distributed through a patient. This makes it difficult to sum dose in a radiobiologically consistent manner.

https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH121_Tosh_Radiation-dose_thematic.jpg 300 240 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:18:122021-01-08 12:30:47Dose reduction in medical radiation – regulators, industry and healthcare professionals seek common front
Page 79 of 102«‹7778798081›»

Latest issue of International Hospital

April 2024

19 November 2025

Siemens Healthineers unveils restructuring plan with new precision therapy segment

18 November 2025

Research shows first direct evidence of weight-loss drug influence on brain signals linked to food cravings

17 November 2025

Clinicians urged to revitalise bedside strategies as technology reshapes patient care

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The medical devices information portal connecting healthcare professionals to global vendors

Sign in for our newsletter
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Media kit
    • Submit Press Release

Tramstraat 15
5611CM Eindhoven
The Netherlands
+31 85064 55 82
info@interhospi.com

PanGlobal Media IS not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Sign in for our newsletter

Free subscription