Surgical treatment of epilepsy

Scientists at the University of Exeter have developed a pioneering new technique that could revolutionise the surgical treatment of epilepsy.
The team of scientists, led by Dr Marc Goodfellow and Professor John Terry, have developed the ground-breaking new method that can identify the specific regions of the brain that trigger seizures in people with epilepsy.

The new technique is designed to help surgeons and neurologists measure the relative contribution to the occurrence of seizures made by different brain regions, and so determine which regions to remove to have most benefit to the individual.

At present, people with epilepsy are treated initially through medication, which aims to dramatically reduce or remove the threat of seizures. However anti-epilepsy drugs prove ineffective in around one-third of people. In these cases, patients can elect to undergo surgery to remove small parts of the brain – which does not impact healthy brain function – but which can help reduce the chance of experiencing seizures.
Surgeons record electrical activity from the surface of the brain and study the electrical rhythms to attempt to identify the brain regions where seizures begin. However, current approaches are only partially effective with around 50% of people with epilepsy seeing significant long-term improvements following surgery.
The new method devised by the scientists, which used state-of-the-art mathematical modelling procedures, can more accurately distinguish the brain regions that are the source of seizure activity from those that become involved as a result of a seizure starting.

Professor Terry, Director of the EPSRC Centre for Predictive Modelling in Healthcare and an expert in Biological Modelling from Exeter’s Mathematics department said: ‘This research has the potential to dramatically improve surgical success rates for those patients who need it, and so also dramatically improve their quality of life.

‘The potential is truly outstanding. It gives surgeons valuable information on how different brain regions contribute to seizures, enabling them to predict the outcome of different surgical strategies and so better plan surgery.
‘Imagine someone was in a theatre and sending text messages to random audience members, making their phones ring. Current techniques are in essence akin to removing those people who receive the messages – they are contributing to the disruption and so removing them could make a difference. But clearly it would be better to identify and remove the individual sending out the messages – the original source. That is what our methods achieve – identifying the original source.’

University of