First synthetic retina
A synthetic, soft tissue retina developed by an Oxford University student could offer fresh hope to visually impaired people.
Until now, all artificial retinal research has used only rigid, hard materials. The new research, by Vanessa Restrepo-Schild, a 24-year-old doctoral student and researcher at Oxford University’s Department of Chemistry, is the first to successfully use biological, synthetic tissues, developed in a laboratory environment. The study could revolutionise the bionic implant industry and the development of new, less invasive technologies that more closely resemble human body tissues, helping to treat degenerative eye conditions such as retinitis pigmentosa.
Just as photography depends on camera pixels reacting to light, vision relies on the retina performing the same function. The retina sits at the back of the human eye, and contains protein cells that convert light into electrical signals that travel through the nervous system, triggering a response from the brain, ultimately building a picture of the scene being viewed.
Vanessa Restrepo-Schild led the team in the development of a new synthetic, double-layered retina which closely mimics the natural human retinal process. The retina replica consists of soft water droplets (hydrogels) and biological cell membrane proteins. Designed like a camera, the cells act as pixels, detecting and reacting to light to create a grey scale image. The Colombian native said: The synthetic material can generate electrical signals, which might stimulate the neurons at the back of our eye just like the original retina.’
The study shows that unlike existing artificial retinal implants, the cell-cultures are created from natural, biodegradable materials and do not contain foreign bodies or living entities. In this way the implant is less invasive than a mechanical device, and is less likely to have an adverse reaction on the body. Miss Restrepo-Schild added: The human eye is incredibly sensitive, which is why foreign bodies like metal retinal implants can be so damaging, leading to inflammation and/or scarring. But a biological synthetic implant is soft and water based, so much more friendly to the eye environment.’
Of the motivation behind the ground-breaking study, Miss Restrepo-Schild said: I have always been fascinated by the human body, and want to prove that current technology can be used to replicate the function of human tissues, without having to actually use living cells.
University of Oxford www.ox.ac.uk/news/2017-05-04-oxford-student-creates-first-synthetic-retina