• National Healthcare CMO
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • Subscribe, it’s free!
  • Search
  • Menu Menu
International Hospital
  • AI
  • Cardiology
  • Oncology
  • Neurology
  • Genetics
  • Orthopaedics
  • Research
  • Surgery
  • Innovation
  • Medical Imaging
  • MedTech
  • Obs-Gyn
  • Paediatrics

Archive for category: Featured Articles

Featured Articles

ArtPix DRF, a unique Imaging Platform for Dynamic X-Ray applications

, 26 August 2020/in Featured Articles /by 3wmedia

Over the last 60 years, medicine has made major advances in diagnosis, treatment and surgery. Radiography and Fluoroscopy imaging are essential to medical science. As a result, Original Equipment Manufacturers (OEM’s) need to deliver ever more sophisticated turnkey platforms for their systems which are dedicated to end-users. Thales has designed a platform that meets all of these needs.

ArtPix DRF, a unique Imaging Platform for Dynamic X-Ray applications

ArtPix DRF is an advanced imaging platform that helps OEMs bring Radio-Fluoroscopy systems to market by reducing integration, certification, time and cost through flexibility and reactivity. This increases customer gain by optimizing margins and has several key advantages such as image quality and design. The system is designed to deliver outstanding performance in fluoroscopy and radiography, enhancing radiology department workflow & productivity.

State of the art dynamic and static images

ArtPix DRF introduces a real 10-bit image pipeline and a set of unique algorithms based on parallel computing, providing real-time, full HD images as well as flexibility of adjustments on demand. Users can customise the imaging platform to suit their preferences, including user-interface, display configuration, image quality and room peripherals. A proprietary image processing allows adjustments according to the regions of the world, user experience expectations and preferences. 

Multiple advanced applications are embedded in this solution

ArtPix DRF is based on a user-friendly application that controls the generator and remote tables. For the physician, it also includes a patient vicinity controlled application to enhance treatment. The system offers increased value to OEM’s by featuring a vast choice of advanced clinical options such as: Tomosynthesis, stitching, radiation-less positioning, etc.

Integration and daily use are facilitated thanks to an intuitive setup, calibration and application

The setup, calibration, generator settings and stations can be easily configured by an X-ray technician guided by ArtPix DRF, allowing the system environment to be easily adjusted. Thanks to these options and the flexibility to change all of the configurations, time and money are saved by practitioners and therefore, a higher number of patients can be seen. The platform has been designed to tackle IT and patient information vulnerabilities. The system is compliant with the latest information security standards.

The people we rely on to keep us healthy rely on Thales to provide pioneering fluoroscopy solutions. Thales’ 60 years of experience in the domain, combined with its ability to remain at the forefront of innovation, has made the Group the leading choice for many radiological system manufacturers. With the launch of the world’s 1st 4343 panel dedicated to fluoroscopy in 2007, the company is perceived as a precursor in this domain. Nowadays, and thanks to its long term expertise, Thales is increasingly engaged in the development of image chain platforms in order to provide complete and efficient solutions for systems integrators and end-users. Discover ArtPix DRF at the ECR congress from 1-4 March 2018, Thales booth N°410 – Foyer D.

https://interhospi.com/wp-content/uploads/sites/3/2020/08/thales_2.jpg 450 718 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:17:292021-01-08 12:30:15ArtPix DRF, a unique Imaging Platform for Dynamic X-Ray applications

New frontiers in point of care diagnotics – trends in genetics, biosensors and microfluidics

, 26 August 2020/in Featured Articles /by 3wmedia

Almost precisely a decade ago, the US National Institutes of Health remarked that point-of-care (POC) testing might offer a paradigm shift towards predictive and pre-emptive medicine.
Recent advances in areas such as genetics testing, biosensors and microfluidics continue to enthuse proponents of such scenarios.
However, several challenges still need to be addressed, along the way.

Quicker, better and cheaper
POC testing, which simply means diagnostic tests are done near the patient rather than a clinical laboratory, provides diagnostic information to physicians and/or patients in near-real time. Samples do not need to be transported, or results collected.  Short turnaround times are accompanied by high sensitivity and a sample-to-answer format, as well as reduced costs to the health service.

Push-and-pull
Unlike many other medical innovations, the push of POC technology has been accompanied by a pull from users. Patients find POCs convenient and empowering. Many POCs allow them to monitor their health and medical status at home. Alongside the growing availability of medical information on the Internet, and other enabling technologies such as telemedicine, POCs also mark the coming of age of personalized medicine.

Classifying POC tests
POC tests can be broken down in terms of size/disposability and complexity. At one end are small handheld tests, above all for glucose, and lateral flow strips which determine cardiac markers and infectious pathogens, or confirm pregnancy. 
In recent decades, strip technology has been coupled to meter-type readers, typified by the now-widely used glucose meter.  Due to their compact nature, such POC tests are often specialized and limited in overall functionality. However, some can be quite sophisticated. New POC tests for early detection of rheumatoid arthritis, for example, require only a single drop of whole blood, urine or saliva, and can be performed and interpreted by a general physician within minutes.
On the other side of the equation are laboratory instruments, which have been steadily reduced in size and complexity. Recent launches include small immunology or hematology analysers. These POC tests provide higher calibration sensitivity and quality control and are used for more complex diagnostic procedures. Such devices have been accompanied by increasing levels of automation, which translates into increased speed. However, it also leads sometimes to challenges in training users.

Technology drivers
Three key technologies driving the POC market currently consist of genetic tests, biosensors and microfluidics. Combinations of biosensors and microfluidics have recently been developing at an especially dramatic pace.

Genetic testing
Traditionally, genetic testing involved DNA analysis to detect genotypes of interest, either for clinical purposes or related to an inheritable disease. However, results took days or weeks, limiting the applicability of genetic testing in a POC setting.

Emergence of molecular genetics
In recent years, molecular genetics has emerged as one of the most exciting frontiers for POC testing.  It detects DNA and RNA-level abnormalities that provoke and fuel most diseases. As a result, it offers precise diagnosis, determines the susceptibility of a patient to a specific disease and assesses his or her response to therapy. Molecular diagnostics can also establish a patient’s prognosis over time far more scientifically than what is often no more than a physician’s informed guess. 
One of the first POC gene tests was US biotech firm Cepheid’s GeneXpert, developed to detect the chromosome translocation associated with chronic myeloid leukemia. The small benchtop device provided results in less than two hours, with minimal manual labour involved.
Several companies have been developing tests to analyse genetic polymorphisms which influence the effectiveness of drugs. For instance, Spartan from Canada has developed a one-hour test to analyse CYP2C19, the cytochrome P450 enzyme that activates the antiplatelet inhibitor clopidigrel. Different alleles of the CYP2C19 gene can impair the enzyme’s ability to metabolize the drug, leading to major adverse reactions. Others are developing quick turnaround tests (below 20 minutes), for instance, to detect polymorphisms associated with warfarin response, in order to guide dosage.
These developments focus on analysing very specific targets, with clinical decisions based on a handful of expected results. POC testing in such contexts evidently saves time and permits faster patient care.

Gene sequencing: challenges and breakthroughs

The case is different when the POC effort involves sequencing a gene or a whole genome. This is largely because the interpretation of (otherwise-quick) results are still time consuming and need trained experts.
In spite of this, some innovators are confident about the opportunity for handhelds in genomic sequencing. MinION is a 90 gm handheld device, and is seen by its developer Oxford Nanopore as a first step to ‘anything, anywhere’ sequencing. MinION, which has been used in UK hospitals and in West Africa during the Ebola outbreak, performs nanopore-based sequencing within just a few hours.
There is much more, however, that remains to be smoothed out. MinION shows a high error rate compared to existing next generation sequencing (NGS) platforms and it is impractical for use with larger genomes.
As these kinds of POC genomic technologies continue to develop, other enabling innovations are also likely to make an impact. For example, some researchers have harnessed mobile phone technology for gene variation analysis and DNA sequencing. Its implications in a POC setting would clearly be massive.

Biosensors
As mentioned above, another technology driving POC diagnostics consists of biosensors.
Biosensors are biological materials, closely associated with a transducer to detect the presence of specific compounds.
A biosensor system consists of a biospecific capture entity to detect the target molecule, a chemical interface to control the system function and a transducer for signal detection and measurement. Transducers can be electrochemical, optical, thermometric, magnetic or piezoelectric. Their aim is to produce an electronic signal proportional to an analyte or a group of analytes.
The biospecific capture entity (typically whole cells, enzymes, DNA/RNA strands, antibodies, antigens) is chosen according to the target analyte, while the chemical interface ensures the biospecific capture entity molecule is immobilized upon the relevant transducer. 

Key requirements
One key requirement in a biosensor is selective bio-recognition for a target analyte, and the ability to maintain this selectivity in the presence of interference from other compounds. The selectivity depends on the ability of a bio-receptor to bind to the analyte. Bio-receptors are developed from biological origins (e.g. antibodies) or patterned after biological systems (such as peptides, surface- and molecularly-imprinted polymers).
The second requirement in a biosensor is sensitivity. This depends on a wide range of factors, such as the properties of the sensor material, the geometry of the sensing surface and resolution of the measurement system. One of the most important factors in this context is surface chemistry, used to immobilize the bio-recognition element on the sensing surface.

BioMEMS
In the field of POC, there has for some time been considerable excitement about biomedical (or biological) microelectromechanical systems, known by their abbreviation BioMEMS.
BioMEMS are biosensors fabricated on a micro- or nano-scale, resulting in higher sensitivity, reduced detection time and increased reliability. Reagent volumes are also reduced due to the smaller size of BioMEMS, which increases their operational cost-effectiveness.
The miniaturization inherent to BioMEMS means greater portability, which is of course a cardinal requirement for POC applications.
Next-generation POC systems are expected to go beyond diagnostics to advance warning, by ‘learning’ about patients (including vital signs such as heart rate, oxygen saturation, changes in plasma profile etc.), and discovering problems in advance through the use of sophisticated algorithms. Such monitoring systems are likely to comprise different types of wearable or implantable biosensors, communicating via wireless or 4G links to their smartphones and onwards to a medical centre. Such systems would dramatically reduce response time and make testing available in environments where laboratory testing is simply not feasible.

Microfluidics: lab-on-a-chip
Microfluidics, also known as lab-on-a-chip, miniaturize and integrate most of the functional modules used in central laboratories into a single chip. The technology is seen as a high-potential driver of POC diagnostics, not least in developing countries.
There are three principal families of POC microfluidic tests – lateral flow devices, desktop or handheld platforms and (emerging) molecular diagnostic systems. The systems range from zero-instrumented POC devices for the detection of pathogens to fully-instrumented equipment such as NGS sequencing and droplet-based microfluidics.
Microfluidic applications have grown at a dizzying speed, due to the inherent advantages and promises of the technology. These include the ability to manipulate very small volumes of liquids and perform all analytical steps in an automated format – from sample pretreatment, through reaction and separation to detection. Assay volumes are therefore reduced dramatically, while sample processing and readout are accelerated. Other salient features of microfluidics consist of parallel processing of samples with greater precision control, and versatility in formats for different detection schemes. These of course translate to greater sensitivity.

Technology trends
Key technology trends in the field of microfluidics, which have a direct bearing on POC use, include growing miniaturization, higher efficiency chemical reagents, accelerated sampling times as well as larger throughputs in synthesis and screening. As with BioMEMS biosensors, the advantages of microfluidics also consist of low device production costs and disposability,
Some researchers are looking at the commodification of microfluidics – for example, mass production by using inexpensive materials such as paper, plastic and threads, coupled to cost-effective manufacturing processes.
Paper has drawn the highest degree of attention, given that it is lightweight, biocompatible with assays and ecologically friendly.  In terms of operation, paper microfluidics is seen as an innovative means to escape the limitations of external pumps and detection systems. Flow in paper is driven by simple capillary forces. Another major advantage of paper is its application in colorimetric tests for detection by the naked eye.  Given the proliferation of smartphones equipped with high-resolution cameras, some experts view paper microfluidics becoming the tool of choice for POC diagnostics in developing countries.

Biosensor-microfluidics combinations: developing at a ‘violent’ pace
Efforts to merge biosensors with microfluidics have also been demonstrated since the mid-2000s. Progress has been encouraging. Last year, a University of Copenhagen research team, led by biotechnologist Alexander Jönsson and visiting Canadian scientist Josiane Lafleur, noted that the “marriage of highly sensitive biosensor designs with the versatility in sample handling and fluidic manipulation” offered by microfluidics promises to “yield powerful tools for analytical and, in particular, diagnostic applications.” Their article, ‘Recent advances in lab-on-a-chip for biosensing applications’, was published in the February 2016 issue of the journal ‘Biosensors and Bioelectronics’, and noted that areas where microfluidics  and biosensors converged was “rapidly and almost violently developing.” Nevertheless, the authors also found there is still much more to be done, with the observation that “solutions where the full potentials are being exploited are still surprisingly rare.”

https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH158_POC-tech-trends_Tosh_thematic.jpg 533 800 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:17:292021-01-08 12:30:23New frontiers in point of care diagnotics – trends in genetics, biosensors and microfluidics

Neonatal imaging – beyond MRI-compatible incubators

, 26 August 2020/in Featured Articles /by 3wmedia

Diagnostic and prognostic MRI is recommended for infants for a range of conditions. These include gestational age below 30 weeks, in premature infants suspected of metabolic disease, and in term infants who might have sustained perinatal brain injuries or who show Stage 2 or 3 hypoxic-ischemic encephalopathy.

MRI preferred imaging solution for numerous conditions
Although ultrasound (US) is used as first-line imaging in certain cases like intracranial hemorrhage, MRI is indicated for most other infant brain and head neuroimaging. This has been the case for some time. One example is a report published in 1990 in the French-language journal ‘Pediatrie’ by a team from the CHU Hautepierre hospital in Strasbourg, which discusses the advantages of MRI over ultrasound in areas such as brain injury. The report, nevertheless, also points out the problems with neonatal MRI, such as the need for immobilization and lack of accessibility.  Such difficulties have persisted over the years.
Indeed, in the early 1990s, Britain’s Hammersmith Hospital installed a 1T MRI scanner in the NICU. However, it had a limited field of view and was replaced with a conventional adult-sized 3T system. In fairly short order, the 3T system was found not only challenging to use in the NICU due to its long bore and problems of access to infants, but also expensive to operate.

Guidelines for infant MRI imaging
At present, a multitude of guidelines recommend that MRI is used to follow up ultrasound diagnosis of parenchymal brain injury, post-hemorrhage ventricular dilatation as well as US (or clinical) suspicion of abnormalities in the posterior fossa and at the brain’s convexity. Other conditions in infants that indicate MRI imaging include brain inflammation (meningitis, encephalitis, brain abscess etc.) and seizures, abnormal consciousness and/or asymmetry which cannot be satisfactorily explained by US findings.
The case for MRI after ultrasound has also been studied extensively. One report from the Medical University of Vienna in 2010 stated that among infants undergoing cranial ultrasounds after clinical seizure, MRI was able to identify a causative pathology in 42% of cases where US findings were unspecific.

Conventional MRI “not designed” for infants
As mentioned in an ‘Advances in Neonatal Care’ analysis in 2005, it takes a single look at a typical MRI scanner to know that “it was not designed for an infant.”
Technically, a baby’s head size poses one of the first challenges. Standard MR head coils lead to sub-optimal picture quality and adult knee coils are often used instead.
Cooperation between neonatal team and radiologists
Given the very small size of a neonate brain, it is especially important to have high signal-to-noise ratios (SNR) for delineation of anatomical details. This was one of the major limitations of smaller, customized low-field MRIs designed for NICUs. At Royal Hallamshire Hospital in Sheffield, for example, a 0.17T system with 15mT/m gradients was installed in the early 2000s, but its low SNR made it impossible to use emerging  MRI techniques such as diffusion tensor imaging and MR spectroscopy in neonates.

The best way forward has instead been seen in tailoring MR protocols to the neonatal brain. This is however a complex task. MR protocols involve a wide range of technical factors: echo time, repetition time, flip angle, slice numbers, slice thickness, scan duration, field of view etc. Achieving this “requires close cooperation between the neonatal team, radiographers and radiologists,” according to a study at Ireland’s University of Cork, published in 2012 in the ‘British Journal of Radiology’.

The challenge of transfers
The transfer of infants from a continuously-monitored NICU to MRI suites has been one of the most vexatious problems. As discussed in the 2005 edition of ‘Advances in Neonatal Care’ cited above, MRI scanners “are often situated far away from the NICU.”
The move of infants to an MRI room involves multiple transfers – from NICU bed to incubator to scanning table, and then backwards. These have to be made in a relatively short period of time, which can add dramatically to physiological stress.
Specific problems during transfer include the chance of extubation and arterial or venous decannulation. Excessive movement in a premature infant is also known to adversely affect cerebral blood flow. This, in turn, can defeat the very purpose of an MRI, by altering results.

Sedation and hypothermia

The question of whether or not to sedate infants before transfer is also a major challenge. Sedation has risks. Moreover, a sedated neonate requires continuous monitoring during an MRI.
There are problems after the transfer, too. Once in the MRI room, infants must be removed from the warmth of the incubator to a cooler scanning table. Towards this, they are usually swaddled in blankets, accompanied sometimes by neonatal thermal packs to prevent heat loss. The American College of Radiology (ACR) also recommends use of temperature probes for infants to take an auxiliary temperature before and after the examination.
Even as the MRI begins, NICU staff need to be on alert to decide if an examination must be halted. This may be due to the impact of the transport, cold, stress, sedation etc..

MRI-compatible incubators
Since the early 2000s, attention has focused on MRI-compatible incubators. These are equipped with an integrated head coil and accompanied by auditory shielding, temperature and humidity regulators, a ventilation support system and monitors specifically certified for the massive magnetic environment of the MRI.
In February 2004, ‘Pediatrics’ published a report on the imaging of seven non-sedated neonates via the use of an MRI-compatible incubator. The authors noted that the “constant environment reduces the risk of adverse events occurring during the transport and imaging of the neonate.”
Not all problems, however, were mastered by the incubator. For instance, the infant was not easily visible from the control room and required the presence of a staff member in the vicinity. In addition, in spite of temperature and humidity controls, additional monitoring was required for electrocardiography and oxygen saturation.
Nevertheless, interest in MRI-compatible neonatal incubators has continued.
In September 2010, the ‘European Journal of Paediatric Neurology’ published results of a study which found that MRI-compatible incubators reduced the mean gestational age of patients from 44 to 39.7 weeks, and in parallel, more than doubled incubator use from 14.8% to 36% for ventilated neonates.
Advantages of the MRI-compatible neonatal incubator also included halving the time required for handling the infant, a reduction of total procedure time by an average of 20 minutes, and in imaging time by four minutes. Such time savings arose from the fact that there was no need to stabilize the infant. Furthermore, no MRI procedure was terminated due to insufficient sedation or infant instability; previously, one in 10 infants had required additional sedation during the procedure.
Equipment compatibility and safety
In May 2013, researchers from Australia’s Royal Brisbane and Women’s Hospital published results of a three-year review on MRI-compatible incubators in the ‘Journal of Paediatrics and Child Health’. Although the overall conclusions were positive, with no adverse incident reported over the period, the authors drew attention to several “practical issues”.
The first was a 30-45 minute pre-warming period required to reach an appropriate temperature setting for babies. The second consisted of difficulties in reading the incubator’s patient monitor interface, including key data such as cot temperature, pulse rate and oximetry readings. Once again, as with the February 2004 ‘Pediatrics’ study mentioned previously, the Royal Brisbane researchers recommended “that staff remain in the scan room throughout the procedure to monitor the well-being of the baby.”
The biggest challenge, however, concerned compatibility of equipment connected to the incubator. For instance, though the ventilator was MRI-compatible, it was not designed to provide humidified or preheated gas. The researchers also noted the need to improvise very specific procedures, for example, in extending infusion lines from pumps located outside the imaging room, which were not MRI-compatible.
Indeed, the need to use MRI-compatible or MRI-safe accessories, ranging from thermal packs and temperature probes to noise protectors, remains one of the biggest drawbacks with MRI-compatible incubators outside the NICU. The authors of the Royal Brisbane study point to “difficulties in sourcing a gas supplier to refill the portable MRI-compatible air and oxygen cylinders because of their special status outside the usual medical gas cylinder refilling programme.”
The scale of such problems becomes dramatic when intubation or resuscitation is required. In such cases, the infants need to be rapidly removed from the MR system and its magnetic fringe. The only alternative is to ensure that, rather than just accessories, the entire range of medical equipment – from syringes and infusion pumps to laryngoscopes and suction equipment – is MRI-compatible.

More research needed

In February 2015, ‘Advances in Neonatal Care’ published results from a systematic review of 13 research studies, two quality improvement projects, as well as practice guidelines and articles on neonatal MRI imaging by the Norwegian Neonatal Network and Oslo University Hospital.
The authors concluded that although results seemed promising and increasingly consistent, “more research is needed before conclusive recommendations” could be established about MRI-compatible incubators and associated techniques.

Alternatives emerge

Recently, a system from Aspect Imaging known as Embrace Neonatal MRI has sought to close the gap between NICU imaging requirements and the capabilities of current MRI-compatible incubators.  Embrace received authorization from United States Food and Drug Administration (FDA) in July 2017, and in November obtained a CE marking for European Union sales.
Unlike conventional MRI machines, the new system does not require a safety zone or a radio-frequency shielded room. Since it is fully enclosed, medical device implants or equipment in the NICU in close proximity are not required to be MRI-compatible.  Other advantages include an always-on permanent magnet; it therefore requires no electrical, cryogenic or water cooling (click here for more details on this product).

Other approaches to neonate imaging are also under evaluation.
Cincinnati Children’s Hospital in the US, for example, has installed a commercial 1.5-T MRI system in its NICU, based on an orthopedic system coupled to custom-built components – most significantly, a high-end scanner. The unit’s gradient coil is about 2.5 times shorter than a conventional adult-sized system. In January 2014, the ‘American Journal of Roentgenology’ published results of a study at the hospital on imaging neonates. Although its scope was small (15 infants), the authors concluded that the system was capable of producing “high quality” images of neonates, not only of the brain but also the abdomen and chest.
As with other efforts to date, the modified system also attained several collateral objectives, such as ease of installation and operation in an NICU, improved visual contact and physical access to the infant, along with the use of advanced imaging techniques, ECG and respiratory gating and triggering.  One of “the most important benefits”, according to the authors, consisted of “the reduction of risk associated with transport of the neonate to and from the NICU.” As discussed previously, this has been the single biggest challenge for neonate imaging and a driver of most design and technology development for over 25 years.

https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:17:292021-01-08 12:30:16Neonatal imaging – beyond MRI-compatible incubators

Nova Biomedical launches Stat EMS Basic in CE Mark countries

, 26 August 2020/in Featured Articles /by 3wmedia

Nova Biomedical has launched the Stat EMS Basic blood testing system for ambulance and emergency care in CE mark countries. Stat EMS Basic measures fingerstick capillary lactate, glucose, ketone, hemoglobin, and hematocrit in six to 40 seconds with laboratory-quality results.
Specifically designed for ambulance, pre-hospital, and emergency use, Stat EMS Basic provides an important test menu and rapid results to aid with patient assessment and allow for faster, more effective emergency treatment. Stat EMS Basic also assists with rapid triage and determining the appropriate transport site for patients who have trauma, sepsis, anemia, acute coronary syndrome, or other critical illnesses.
Stat EMS Basic is a smaller, non-connectivity version of Nova’s connectivity-capable Stat EMS system with the same test menu. Stat EMS Basic combines batteryoperated StatStrip Xpress2 meters in a new, lightweight soft case that easily fits in a medic’s bag while holding all system components: meters, test strips, controls, and lancets. Test strips and controls require no refrigeration, making testing convenient and economical.
Stat EMS Basic meters use Nova’s patented, disposable test strips that provide lab-like accuracy, including the only lactate test strip cleared for fingerstick testing and the only glucose test strip proven accurate enough to have been cleared by the U.S. FDA for use with critically ill patients – and used in thousands of hospitals worldwide.
Stat EMS Basic meters are easy to use; there is no calibration or coding and the testing procedure is as simple as fingerstick glucose testing performed by people with diabetes. Tiny capillary samples eliminate the need for venipuncture, saving time and reducing costs.
For more information, visit: www.novabio.us

https://interhospi.com/wp-content/uploads/sites/3/2020/08/AD_NOVA_BIOMEDICAL.jpg 1028 682 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:29:42Nova Biomedical launches Stat EMS Basic in CE Mark countries

Hologic: The company that places special emphasis on the healthcare needs of women

, 26 August 2020/in Featured Articles /by 3wmedia

In 1985, two colleagues from American Science and Engineering, Jay Stein and David Ellenbogen, founded Hologic to commercialize a bone scanning system that employed X-ray technology. It would become the world’s first X-ray bone densitometer for evaluating osteoporosis. Over the years, Hologic has acquired complementary companies that have enabled it to become a global player in women’s health and the undisputed market leader in mammography.
International Hospital talked to Pete Valenti, Division President, Breast and Skeletal Health Solutions at Hologic to learn more about the latest developments and strategy of this innovation-driven company.

1. Hologic is most generally associated with mammography and breast disease diagnosis. However, that’s not the whole story. How would you define the current positioning of the company?
Hologic was the first company to bring digital breast tomosynthesis (DBT) to market, forging the path for how mammography exams are approached today, so it comes as no surprise that the company is most generally associated with breast cancer screening. However, as you suggest, screening is only one part of Hologic’s full story.
A global leader in women’s health, Hologic is primarily focused on improving women’s health and well-being through early detection and treatment across four divisions: Breast & Skeletal Health, Diagnostics, Gynecological Surgical Solutions and Cynosure, our medical aesthetics division. Each division is built on a foundation of the exceptional, clinically proven ability of our products to detect, diagnose and treat illnesses and other health conditions earlier and better, while also keeping in mind clinicians’ needs such as workflow efficiency.

2. Recently, Hologic has expanded its breast health product line significantly, could you briefly describe some of these innovative product launches?
We have spent the past several years thoughtfully expanding our breast health portfolio through a commitment to insight-driven innovation and strategic acquisitions that align with our mission. Now we can make a positive impact on breast health at each step of a woman’s journey – from screening to pathology.
The Trident® HD specimen radiography system and the LOCalizer™ wire-free guidance system are two products that launched in 2019 under our new breast surgery franchise.
The Trident HD system is a next-generation solution that delivers enhanced image quality, improved workflow and instant sample verification during breast-conserving surgeries and stereotactic breast biopsies, while the LOCalizer system is designed to enable precision and ease of use for breast surgery guidance. The system’s LOCalizer tag is designed to replace traditional wire-guided methods, helping provide increased comfort and convenience for patients and their healthcare teams.
Both products have received CE Mark in Europe and reflect Hologic’s aim to benefit both patients and clinicians by arming them with accurate, efficient technology.

3. This expanded product portfolio is enabling the company to be active in breast conserving surgery as well as pathology. Do you see these segments as a major growth opportunity?
I absolutely see breast conserving surgery and pathology as growth opportunities for Hologic; and, as touched upon earlier, I believe our expansion into these parts of the breast care continuum is also about making as much of a positive impact as possible for patients and clinicians throughout the entire pathway of care.
4. There have also been some strategic acquisitions lately, for example with the LOCalizer. Is this a scenario that might be repeated in the near future?
At Hologic, we are in a fortunate position where we are able to both innovate healthcare solutions from within and make strategic acquisitions from external sources. As opportunities arise, we are always willing to examine how we can continue to impact patients and clinicians in a positive way through new and consistently high-quality technology. 

5. What do you see as the next step for Hologic?
Hologic will continue to work to bring to market crucial healthcare solutions that address both patients’ and clinicians’ needs by taking into consideration all factors, from accuracy and workflow efficiency, to the patient experience and beyond. It is approaching innovation with this holistic view that sets Hologic apart as an industry leader, and by bringing this mindset into new areas of the healthcare continuum like breast conservation surgery, I believe Hologic will make an even greater positive impact on the lives of women across the globe.
I think we’ll also see great evolution in our technology and approaches to risk stratification as we continue to explore how to best leverage the benefits of artificial intelligence to support clinicians and the important work they are doing.

www.hologic.com
https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH196_Hologic_Q_A_article_valenti2.jpg 800 800 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:29:51Hologic: The company that places special emphasis on the healthcare needs of women

IHF: Traceability and barcoding

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH187_IHF_page1.jpg 1500 1060 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:29:59IHF: Traceability and barcoding

CMEF Spring 2020

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/CMEF_Spring_2020.jpg 1396 1000 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:29:46CMEF Spring 2020

KIMEX 2020, 19-22 March 2020, COEX, Seoul

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/KIMES_2020_IHE_Junior_revised.jpg 1457 1000 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:29:54KIMEX 2020, 19-22 March 2020, COEX, Seoul

IHF: University Hospital Governance

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/IH176_IHF_page1.jpg 1415 1000 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:30:02IHF: University Hospital Governance

Medica Fair Asia 2020

, 26 August 2020/in Featured Articles /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/08/MFA2020_EPAD_92X178mm_FA_IHE.jpg 1877 1000 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:16:482021-01-08 12:29:48Medica Fair Asia 2020
Page 85 of 93«‹8384858687›»
HemoSonics

Latest issue of International Hospital

May | June 2023

25 September 2023

National Healthcare CXO Summit

19 September 2023

First breast CT scanner installed in South Korea

1 September 2023

National University Health System Launches World’s First Public Hospital’s Healthy Longevity Clinic at Alexandra Hospital

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The medical devices information portal connecting healthcare professionals to global vendors

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release

Hastelweg 250
5652 CN Eindhoven
The Netherlands
+31 85064 55 82
info@interhospi.com

PanGlobal Media IS not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription