• News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • Subscribe newsletter
  • Search
  • Menu Menu
International Hospital
  • AI
  • Cardiology
  • Oncology
  • Neurology
  • Genetics
  • Orthopaedics
  • Research
  • Surgery
  • Innovation
  • Medical Imaging
  • MedTech
  • Obs-Gyn
  • Paediatrics

Archive for category: Corona News

Corona News

Lung cells in patients with severe COVID become trapped in a state (indicated by the green color) that prevents the cells from repairing damage caused by the infection. The left image shows cells from a healthy lung; the right image shows lung cells from a patient who died from COVID-19

New Cell Atlas of COVID lungs reveals why SARS-CoV-2 is different and deadly

, 3 May 2021/in Corona News, E-News /by panglobal
Lung cells in patients with severe COVID become trapped in a state (indicated by the green color) that prevents the cells from repairing damage caused by the infection. The left image shows cells from a healthy lung; the right image shows lung cells from a patient who died from COVID-19.

Lung cells in patients with severe COVID become trapped in a state (indicated by the green color) that prevents the cells from repairing damage caused by the infection. The left image shows cells from a healthy lung; the right image shows lung cells from a patient who died from COVID-19. Images: Benjamin Izar / Columbia University Vagelos College of Physicians and Surgeons.

 

A new study published in Nature [1] draws the most detailed picture yet of SARS-CoV-2 infection in the lung, revealing mechanisms that result in lethal COVID-19, and may explain long-term complications and show how COVID-19 differs from other infectious diseases.

Led by researchers at Columbia University Vagelos College of Physicians and Surgeons and Herbert Irving Comprehensive Cancer Center, the study found that in patients who died of the infection, COVID-19 unleashed a detrimental trifecta of runaway inflammation, direct destruction and impaired regeneration of lung cells involved in gas exchange, and accelerated lung scarring.

Though the study looked at lungs from patients who had died of the disease, it provides solid leads as to why survivors of severe COVID may experience long-term respiratory complications due to lung scarring.

“It’s a devastating disease, but the picture we’re getting of the COVID-19 lung is the first step towards identifying potential targets and therapies that disrupt some of the disease’s vicious circuits. In particular, targeting cells responsible for pulmonary fibrosis early on could possibly prevent or ameliorate long-term complications in survivors of severe COVID-19,” says Benjamin Izar, MD, PhD, assistant professor of medicine, who led a group of more than 40 investigators to complete in several months a series of analyses that usually takes years.

This study and a companion paper [2] led by researchers at Harvard/MIT, to which the Columbia investigators also contributed, were published in the journal Nature on April 29.

Study creates atlas of cells in COVID lung

The new study is unique from other investigations in that it directly examines lung tissue (rather than sputum or bronchial washes) using single-cell molecular profiling that can identify each cell in a tissue sample and record each cell’s activity, resulting in an atlas of cells in COVID lung.

“A normal lung will have many of the same cells we find in COVID, but in different proportions and different activation states,” Izar says. “In order to understand how COVID-19 is different compared to both control lungs and other forms of infectious pneumonias, we needed to look at thousands of cells, one by one.”

Izar’s team examined the lungs of 19 individuals who died of COVID-19 and underwent rapid autopsy (within hours of death) – during which lung and other tissues were collected and immediately frozen – and the lungs of non-COVID-19 patients. In collaboration with investigators at Cornell University, the researchers also compared their findings to lungs of patients with other respiratory illnesses.

Drugs targeting IL-1ß may reduce inflammation

Compared to normal lungs, lungs from the COVID patients were filled with immune cells called macrophages, the study found.

Typically during an infection, these cells chew up pathogens but also regulate the intensity of inflammation, which also helps in the fight.

 

The lungs of patients with COVID-19 have more monocytes expressing IL-1beta than lungs from patients with other respiratory conditions.

 

“In COVID-19, we see expansion and uncontrolled activation of macrophages, including alveolar macrophages and monocyte-derived macrophages,” Izar says. “They are completely out of balance and allow inflammation to ramp up unchecked. This results in a vicious cycle where more immune cells come in causing even more inflammation, which ultimately damages the lung tissue.”
One inflammatory cytokine in particular, IL-1ß, is produced at a high rate by these macrophages.
“Unlike other cytokines such as IL-6, which appears to be universally prevalent in various pneumonias, IL-1ß production in macrophages is more pronounced in COVID-19 compared to other viral or bacterial lung infections,” Izar says. “That’s important because drugs exist that tamp down the effects of IL-1ß.”
Some of these drugs are already being tested in clinical trials of COVID patients.

Severe COVID also prevents lung repair

In a typical infection, a virus damages lung cells, the immune system clears the pathogen and the debris, and the lung regenerates.

But in COVID, the new study found that not only does SARS-CoV-2 virus destroy alveolar epithelial cells important for gas exchange, the ensuing inflammation also impairs the ability of the remaining cells to regenerate the damaged lung.

Though the lung still contains cells that can do the repairs, inflammation permanently traps these cells in an intermediate cell state and leaves them unable to complete the last steps of differentiation needed for replacement of mature lung epithelium.

“Among others, IL-1ß appears to be a culprit in inducing and maintaining this intermediate cell state,” says Izar, “thereby linking inflammation and impaired lung regeneration in COVID-19. This suggests that in addition to reducing inflammation, targeting IL-1ß may help take the brakes off cells required for lung repair.”

Preventing accelerated fibrosis

The researchers also found a large number of specific fibroblast cells, called pathological fibroblasts, that create rapid scarring in COVID-19 lungs. When the fibroblast cells fill the lung with scar tissue, a process called fibrosis, the lung has less space for cells involved in gas exchange and is permanently damaged.

Given the importance of pathological fibroblasts in the disease, Izar’s team closely analysed the cells to uncover potential drug targets. An algorithm called VIPER, developed previously by Andrea Califano, Dr, chair of systems biology at Columbia University Vagelos College of Physicians and Surgeons, identified several molecules in the cells that play an important role and could be targeted by existing drugs.

“This analysis predicted that inhibition of STAT signalling could alleviate some of the deleterious effects caused by pathological fibroblasts,” Izar says.

“Our hope is that by sharing this analysis and massive data resource, other researchers and drug companies can begin to test and expand on these ideas and find treatments to not only treat critically ill patients, but also reduce complications in people who survive severe COVID-19.”

References

[1] A molecular single-cell lung atlas of lethal COVID-19. Nature (2021).
https://doi.org/10.1038/s41586-021-03569-1

[2] COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature (2021).
https://doi.org/10.1038/s41586-021-03570-8

https://interhospi.com/wp-content/uploads/sites/3/2021/05/covid_lungs.jpg 1208 2406 panglobal https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png panglobal2021-05-03 09:55:332021-05-03 09:55:33New Cell Atlas of COVID lungs reveals why SARS-CoV-2 is different and deadly
RESPIRE clinical trial

RESPIRE trial of therapeutic for all strains of COVID-19 gets underway in Germany

, 13 April 2021/in Corona News, E-News /by panglobal

RESPIRE clinical trial

 

Investigators hope ATR-002 drug will also be effective against ‘Long-Covid’

 

Tübingen, Germany-based Atriva Therapeutics, a biopharmaceutical company that is pioneering the development of host-targeting antiviral therapies, has enrolled its first patient in its Phase II RESPIRE [1] trial in COVID-19. Prof. Martin Witzenrath, M.D., Vice Director Department of Infectious Diseases and Respiratory Medicine, supervised the first administration of study medication (MEK inhibitor ATR-002 or placebo) at the Charité – Universitätsmedizin Berlin, Germany.

Dr Rainer Lichtenberger, CEO of Atriva Therapeutics, commented: “We are excited to assess the efficacy of ATR-002 in treating COVID-19 and are looking forward to the results of the clinical trial. We can now test our lead candidate against SARS-CoV-2 because our pharmacological target is a common cellular mechanism that RNA viruses use. ATR-002 leaves the virus itself untouched but blocks a cellular factor that the virus needs for its replication and has the potential to reduce the viral load in the infected host.

“Host-directed approaches maintain efficacy also against mutated viruses – a problem that we are commonly seeing in the influenza virus and, unfortunately, in SARS-CoV-2 as well. If we were to see the positive outcomes of the trial we hope for, ATR-002 could provide efficient help against COVID-19 regardless of the given genetic subtype of the underlying viral strain.”

Prof. Gernot Rohde, M.D., Head of Pneumology and Professor for Respiratory Medicine and Allergology at the Goethe University Hospital, Frankfurt am Main, Germany and Global Coordinating Investigator of the RESPIRE trial, said: “While we have been lucky that SARS-CoV-2 vaccines were developed at unprecedented speed, we still are in desperate need for effective therapies against COVID-19. The pandemic situation remains very critical and is far from being under control.

“Being able to contribute to the development of a COVID-19 therapy, I am very much looking forward to the effects that we may see with ATR-002. I am convinced that a medication that can prevent hospitalized patients with a moderate to severe stage of COVID-19 from deteriorating and requiring ICU admission and ventilator support would mean huge progress and could also play a role in impeding the severe long-term effects that are being described as “Long COVID” Syndrome (PASC).”

RESPIRE trial

RESPIRE is a randomized, double-blind, placebo-controlled, international, multi-center Phase II clinical trial in 220 adult patients with moderate to severe COVID-19, requiring hospitalization, but not requiring ICU admission or ventilator support at the time of screening or randomization. On top of standard of care, half of the patients will receive ATR-002 900 mg, administered as tablets once daily on day 1, followed by ATR-002 600 mg once daily on days 2 to 6. Patients in the control group will receive placebo in a matching scheme, on top of standard of care.

The primary objective of the study is to demonstrate the efficacy of ATR-002 versus placebo in addition to standard of care; secondary endpoints include the measurement of changes in clinical signs and symptoms as well as other relevant clinical parameters. Outcomes will be assessed based on the clinical severity status on day 15, using a 7-point ordinal scale as suggested by the WHO COVID-19 Therapeutic Trial Synopsis [2]. All patients will be followed-up for 90 days. The study will also evaluate the pharmacokinetics of ATR-002.

ATR-002’s mode of action

Atriva’s lead product ATR-002 is developed specifically to treat diseases such as influenza and COVID-19, caused by RNA viruses. ATR-002 is a clinical stage MEK inhibitor drug candidate targeting the intracellular Raf/MEK/ERK signaling pathway. This pathway is central for replication of many RNA viruses, such as the influenza virus, hantavirus or respiratory syncytial virus (RSV) and also SARS-CoV-2, the virus that causes COVID-19.

In influenza virus infected cells, the interaction of ATR-002 with MEK (MAPK/ERK kinase) prevents export of the viral genome protein complexes (ribonucleoprotein, RNP) from the nucleus to the cytoplasm, thus blocking the formation of functional new viral particles. This ultimately reduces the viral load in the body. In addition, ATR-002 has the potential to modulate the pro-inflammatory cytokine response of the body, avoiding overshooting cytokine response that can be caused by such viral infections. MEK inhibition can reduce the gene expression of some of the cytokines involved, like TNF-α, IL-1ß, IP-10, IL-8, MCP-1 and MIP-1a, and thus mitigate the overactive inflammatory response in the lungs of patients who are severely ill with influenza or COVID-19.

References

[1] RESPIRE – A Randomized, Double-Blind, Placebo-Controlled, Multi-Centre Clinical Trial to Evaluate the Safety and Efficacy of ATR-002 in Adult Hospitalized Patients with COVID-19.

[2] https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis.

https://interhospi.com/wp-content/uploads/sites/3/2021/04/covid-19-graphic.png 1032 1920 panglobal https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png panglobal2021-04-13 08:47:002021-04-13 08:52:34RESPIRE trial of therapeutic for all strains of COVID-19 gets underway in Germany
covid-19 lung transplant

MedUni Vienna and Vienna General Hospital develop criteria for selecting COVID-19 patients for lung transplantation

COVID-19, Lung transplant, Surgery, 6 April 2021/in Corona News, E-News /by panglobal

Early outcomes after lung transplantation for severe COVID-19In May 2020, a team led by thoracic surgeon Konrad Hoetzenecker of the Department of Surgery of MedUni Vienna and Vienna General Hospital performed a lung transplant on a 44-year-old patient who had been seriously ill with Covid-19, making her the first patient in Europe to receive a lung transplant for this indication. The Vienna lung transplantation programme now plays a leading role in an international consortium comprising experts from the USA, Europe and Asia. Based on the expertise from Vienna, approximately 40 transplants have now been carried out on Covid-19 patients throughout the world.

In a study published in The Lancet Respiratory Medicine, the consortium has now proposed the first general selection criteria for lung transplantation in Covid-19 patients.

“We have collated the first experiences in the world of performing lung transplants on Covid-19 patients. It is clear that such a complex intervention should only be considered for patients who, by virtue of their age and good general health, have a good chance of recovery with new lungs,” explaindc Konrad Hoetzenecker, Head of the lung transplantation programme at MedUni Vienna and Vienna General Hospital. The Vienna team performs around 100 lung transplants a year, making it one of the largest programmes in the world, alongside Toronto, Cleveland and Hanover.

Candidates for a lung transplant

The following factors were established as criteria for potential transplantation: exhaustion of all conservative treatment options, no recovery of the Covid-19-damaged lungs despite at least four weeks of ventilation/ECMO, evidence of advanced and irreversible lung damage in several consecutive CT scans, age below 65 and no relevant comorbidities. In addition to this, candidates for a lung transplant must be in good physical condition and have a good chance of complete physical rehabilitation following the transplant.

“These guidelines can be applied worldwide for making a sound selection of patients who are suitable for a lung transplant following a Covid-19 infection,” according to a statement released by MedUni Vienna.

The surgical team at MedUni Vienna and Vienna General Hospital has meanwhile carried out 12 lung transplantations on Covid-19 patients, demonstrating that even the most seriously ill patients, who would otherwise die, can survive with a lung transplant.

Patient No. 1

In March 2020, patient number one suffered total pulmonary failure as a result of Covid-19, so that artificial ventilation was no longer possible. She could only be kept alive by the circulation pump. At the time of the transplant, the PCR test showed that virus particles were still present but were no longer infectious. The MedUni Vienna/Vienna General Hospital thoracic surgeons and surgical team managed to replace the patient’s completely destroyed lungs with new donor lungs.

Reference:

Early outcomes after lung transplantation for severe COVID-19: a series of the first consecutive cases from four countries.
The Lancet Respiratory Medicine, 2021
https://doi.org/10.1016/S2213-2600(21)00077-1
https://www.sciencedirect.com/science/article/pii/S2213260021000771

https://interhospi.com/wp-content/uploads/sites/3/2021/04/covid-lung-transplant.png 818 1133 panglobal https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png panglobal2021-04-06 12:25:402021-04-06 12:25:40MedUni Vienna and Vienna General Hospital develop criteria for selecting COVID-19 patients for lung transplantation
SARS-CoV-2 virus

Study highlights risk of new SARS-CoV-2 mutations emerging during chronic infection

, 4 March 2021/in Corona News, E-News /by panglobal

SARS-CoV-2 virus

SARS-CoV-2 mutations similar to those in the B1.1.7 UK variant could arise in cases of chronic infection, where treatment over an extended period can provide the virus multiple opportunities to evolve, say scientists.

Given that both vaccines and therapeutics are aimed at the spike protein, which we saw mutate in our patient, our study raises the worrying possibility that the virus could mutate to outwit our vaccines

Writing in Nature, a team led by Cambridge researchers report how they were able to observe SARS-CoV-2 mutating in the case of an immune-compromised patient treated with convalescent plasma. In particular, they saw the emergence of a key mutation also seen in the new variant that led to the UK being forced once again into strict lockdown, though there is no suggestion that the variant originated from this patient.

Using a synthetic version of the virus Spike protein created in the lab, the team showed that specific changes to its genetic code – the mutation seen in the B1.1.7 variant – made the virus twice as infectious on cells as the more common strain.

SARS-CoV-2, the virus that causes COVID-19, is a betacoronavirus. Its RNA – its genetic code – is comprised of a series of nucleotides. As the virus replicates itself, this code can be mis-transcribed, leading to errors, known as mutations. Coronaviruses have a relatively modest mutation rate at around 23 nucleotide substitutions per year.

Of particular concern are mutations that might change the structure of the ‘spike protein’, which sits on the surface of the virus, giving it its characteristic crown-like shape. The virus uses this protein to attach to the ACE2 receptor on the surface of the host’s cells, allowing it entry into the cells where it hijacks their machinery to allow it to replicate and spread throughout the body. Most of the current vaccines in use or being trialled target the spike protein and there is concern that mutations may affect the efficacy of these vaccines.

UK researchers within the Cambridge-led COVID-19 Genomics UK (COG-UK) Consortium have identified a particular variant of the virus that includes important changes that appear to make it more infectious: the ΔH69/ΔV70 amino acid deletion in part of the spike protein is one of the key changes in this variant.

Although the ΔH69/ΔV70 deletion has been detected multiple times, until now, scientists had not seen them emerge within an individual. However, in a study published today in Nature, Cambridge researchers document how these mutations appeared in a COVID-19 patient admitted to Addenbrooke’s Hospital, part of Cambridge University Hospitals NHS Foundation Trust.

Reference:

https://doi.org/10.1038/s41586-021-03291-y

https://interhospi.com/wp-content/uploads/sites/3/2021/03/Covid2.jpg 957 1701 panglobal https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png panglobal2021-03-04 08:29:532021-03-04 08:29:53Study highlights risk of new SARS-CoV-2 mutations emerging during chronic infection

Johnson & Johnson aims to produce a billion doses of COVID-19 vaccine

, 26 August 2020/in Corona News, E-News /by 3wmedia

Johnson & Johnson has announced the selection of a lead COVID-19 vaccine candidate on which it expects to initiate human clinical studies by September at the latest with the first batches of the vaccine available for emergency use authorization in early 2021.
In addition, the company announced the significant expansion of the existing partnership between the Janssen Pharmaceutical Companies of Johnson & Johnson and the Biomedical Advanced Research and Development Authority (BARDA).
Johnson & Johnson also said the company will rapidly scale up its manufacturing capacity with the goal of providing a global supply of more than one billion doses of the vaccine.
Through the new partnership, BARDA and Johnson & Johnson together have committed more than $1 billion of investment to co-fund vaccine research, development, and clinical testing. The company says will use its validated vaccine platform and is allocating resources, including personnel and infrastructure globally, as needed, to focus on these efforts.
BARDA is part of the Office of the Assistant Secretary for Preparedness and Response (ASPR) at the U.S. Department of Health and Human Services.
Commenting on the initiative, Alex Gorsky, Chairman and Chief Executive Officer, Johnson & Johnson, said: “The world is facing an urgent public health crisis and we are committed to doing our part to make a COVID-19 vaccine available and affordable globally as quickly as possible. As the world’s largest healthcare company, we feel a deep responsibility to improve the health of people around the world every day. Johnson & Johnson is well positioned through our combination of scientific expertise, operational scale and financial strength to bring our resources in collaboration with others to accelerate the fight against this pandemic.”
The company’s expansion of its manufacturing capacity will include the establishment of new U.S. vaccine manufacturing capabilities and scaling up capacity in other countries. The additional capacity will assist in the rapid production of a vaccine and will enable the supply of more than one billion doses of a safe and effective vaccine globally.
Paul Stoffels, M.D., Vice Chairman of the Executive Committee and Chief Scientific Officer, Johnson & Johnson, said: “We are very pleased to have identified a lead vaccine candidate from the constructs we have been working on since January. We are moving on an accelerated timeline toward Phase 1 human clinical trials at the latest by September 2020 and, supported by the global production capability that we are scaling up in parallel to this testing, we expect a vaccine could be ready for emergency use in early 2021.” In addition to the vaccine development efforts, BARDA and Johnson & Johnson have also expanded their partnership to accelerate Janssen’s ongoing work in screening compound libraries, including compounds from other pharmaceutical companies. The company’s aim is to identify potential treatments against the novel coronavirus. Johnson & Johnson and BARDA are both providing funding as part of this partnership. These antiviral screening efforts are being conducted in partnership with the Rega Institute for Medical Research (KU Leuven/University of Leuven), in Belgium.

https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:35:292020-08-26 14:35:38Johnson & Johnson aims to produce a billion doses of COVID-19 vaccine

Superbugs and failing drugs

, 26 August 2020/in Corona News, E-News, Editors' Picks /by 3wmedia

Bacteria that develop resistance to antibiotic drugs – superbugs – pose a major global health threat to humanity. In a concerted effort to stave off this threat, several global programmes have been established and numerous new research initiatives are being carried out. Whether they are successful is yet to be seen. International Hospital reports.
Antimicrobial or antibiotic resistance is a major emerging global health threat which continues to escalate around the world. In the EU it is responsible for around 33,000 deaths each year according to the European Commission [1] and is estimated to cost the EU EUR 1.5 billion per year in healthcare costs and productivity losses.
In the United States, the Centers for Disease Control and Prevention (CDC) estimates that more than 2.8 million antibiotic-resistant infections occur in the country each year, and more than 35,000 people die as a result [2].
In the CDC’s 2019 Antimicrobial Resistance Threats Report, Robert R. Redfield, M.D., Director of the CDC, emphasises that we should stop referring to a coming post-antibiotic era. “It’s already here,” he says. “You and I are living in a time when some miracle drugs no longer perform miracles and families are being ripped apart by a microscopic enemy. The time for action is now and we can be part of the solution.”
So, what exactly is antimicrobial resistance (AMR)? Simply put, antimicrobial resistance occurs when microorganisms – such as bacteria, viruses, fungi, protozoa and helminths (worm-like parasites) – mutate or develop a resistance gene when they are exposed to antimicrobial drugs, such as antibiotics, antifungals, antivirals, antimalarials, and antihelminthics. As a result, the drugs become ineffective and infections persist in the body, increasing the risk of morbidity and mortality as well as the spread of the disease to others.
The issue is of such global importance that a political declaration was endorsed by Heads of State at the United Nations General Assembly in New York in September 2016 signalling the world’s commitment to taking a broad, coordinated approach to address the root causes of antimicrobial resistance across multiple sectors, especially human health, animal health and agriculture.
In 2015, the World Health Organization (WHO) established the Global Antimicrobial Resistance and Use Surveillance System (GLASS) [3]. The system calls on countries to monitor and report on antibiotic resistance. The WHO noted in a report published June 1 this year, that in the past three years, participation has grown exponentially. GLASS now aggregates data from more than 64,000 surveillance sites with more than 2 million patients enrolled from 66 countries across the world. In 2018 the number of surveillance sites was 729 across 22 countries.
Hanan Balkhy, Assistant Director-General for antimicrobial resistance at WHO, explained: “The enormous expansion of countries, facilities and patients covered by the new AMR surveillance system allows us to better document the emerging public health threat of AMR.”
On the back of this data, the Organization notes that high rates of resistance among antimicrobials frequently used to treat common infections, such as urinary tract infections or some forms of diarrhoea, indicate that the world is running out of effective ways to tackle these diseases. For instance, the rate of resistance to ciprofloxacin, an antimicrobial frequently used to treat urinary tract infections, varied from 8.4% to 92.9% in 33 reporting countries.
In addition, the WHO expressed concern that the trend will further be fuelled by the inappropriate use of antibiotics during the COVID-19 pandemic. The Organization points out that evidence shows that only a small proportion of COVID-19 patients need antibiotics to treat subsequent bacterial infections and, as such, has issued guidance [4] not to provide antibiotic therapy or prophylaxis to patients with mild COVID-19 or to patients with suspected or confirmed moderate COVID-19 illness unless there is a clinical indication to do so.
Solutions
What can be done to counter AMR? Although antimicrobial resistance occurs naturally over time, usually through genetic changes, there are a number of countermeasures. Primarily, healthcare practitioners should reduce the misuse and overuse of antimicrobials which are accelerating AMR. The WHO notes, for example, that in many places, antibiotics are overused and misused in people and animals, and often given without professional oversight. Examples of misuse include when they are taken by people with viral infections like colds and flu, and when they are given as growth promoters in animals or used to prevent diseases in healthy animals.

CDC’s 2019 Antimicrobial Resistant Threats Report

The CDC’s 2019 AR Threats Report lists 18 antibiotic-resistant bacteria and fungi in three categories based on the level of concern to human health – urgent, serious, and concerning. The ‘urgent’ list includes the following five threats:
Carbapenem-resistant Acinetobacter
Carbapenem-resistant Acinetobacter cause pneumonia and wound, bloodstream, and urinary tract infections. Nearly all these infections happen in patients who recently received care in a healthcare facility. They are estimated to have caused 700 deaths in the US in 2017.
Candida auris
C. auris is an emerging multidrug-resistant yeast. It can cause severe infections and spreads easily between hospitalized patients and nursing home residents.
Clostridioides difficile
C. difficile causes life-threatening diarrhoea and colitis (an inflammation of the colon), mostly in people who have had both recent medical care and antibiotics. Estimated death per year in the US: 12,800.
Carbapenem-resistant Enterobacteriaceae (CRE)
CRE are a major concern for patients in healthcare facilities. Some Enterobacteriaceae are resistant to nearly all antibiotics, leaving more toxic or less effective treatment options. Estimated deaths in the US in 2017: 1,100.
Drug-resistant Neisseria gonorrhoeae
N. gonorrhoeae causes the sexually transmitted disease gonorrhoeae that can result in life-threatening ectopic pregnancy and infertility, and can increase the risk of getting and giving HIV.
See the report for the complete list. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:35:292020-08-26 14:35:31Superbugs and failing drugs

Sanofi and Luminostics to join forces to develop smartphone-based self-testing solution for Covid-19

, 26 August 2020/in Corona News, E-News /by 3wmedia

Sanofi and Luminostics have signed an agreement to evaluate a collaboration on a unique self-testing solution for COVID-19, using Luminostics’ innovative technology, and further adding to Sanofi’s ongoing efforts to fight the COVID-19 pandemic on multiple fronts.
Luminostics would contribute its proprietary technology for consumer-diagnostics for COVID-19 testing while Sanofi would bring its clinical research testing experience and capabilities. The goal is to provide a smartphone-based solution that eliminates the current need for healthcare professional administration or laboratory tests.
“This partnering project could lead to another important milestone in Sanofi’s fight against COVID-19. The development of a self-testing solution with Luminostics could help provide clarity to an individual – in minutes – on whether or not they are infected” says Alan Main, Executive Vice President, Head of Sanofi Consumer Healthcare.
The goal of this collaboration is to provide a consumer-based test that can detect the COVID-19 virus with high sensitivity and specificity from respiratory samples. The total time from specimen collection to results is expected in the range of 30 minutes or less. It is based on Luminostics’ unique technology that utilizes a consumer smartphone’s optics, controlled by an iOS/Android app paired with an inexpensive adapter, in combination with “glow-in-the-dark” nanochemistry and signal processing artificial intelligence.
The diagnostic platform is composed of:

  • an iOS/Android app to instruct a user on how to run the test, capture and process data to display test results, and then to connect users with a telehealth service based on the results;
  • a reusable adapter compatible with most types of smartphones; and
  • consumables for specimen collection, preparation, and processing.

During the current COVID-19 crisis it became obvious that rapid, reliable mass testing is one of the key strategies for successful containment of a pandemic outbreak. While point-of-care tests were made available relatively quickly – although not in a sufficient quantity – no over-the-counter self-testing solution is currently available. A rapid self-testing solution would come with multiple advantages, including:

  • easy access and availability to patients at thousands of points-of-sale including e-commerce;
  • no further interpersonal contact necessary to conduct the testing, thereby lowering the infection risk for patient, HCP, and laboratory staff; and
  • immediate availability of results allowing fast decision making, providing consumers both public health and out-of-pocket cost benefits.
https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:35:292020-08-26 14:35:34Sanofi and Luminostics to join forces to develop smartphone-based self-testing solution for Covid-19

Vehicle manufacturers retool to help medical device industry cope with demand

, 26 August 2020/in Corona News, E-News /by 3wmedia

The German Federal Government asked domestic vehicle manufacturers to produce medical equipment, such as masks and ventilators, to help fight Covid-19.
In a statement, the Volkswagen Group announced 20 March it will be providing about 200,000 category FFP-2 and FFP-3 protective face masks for public health protection in the near future. The donation is being made in close cooperation with Federal Minister of Health Jens Spahn.
A spokesperson said the company has more than 125 industrial 3-D printers which could be repurposed to make respirators or other necessary devices, once they receive the required info.
Kathrin Schnurr, spokesperson for Daimler AG Human Resources and External Affairs Communications told International Hospital: “We have inquiries from the medical technology sector. We are currently examining how we can contribute, for example by providing 3D printers or our production expertise.
“In addition, we are in constant communication with the authorities about how and where we can help, for example to sustain the supply infrastructure.”
This follows a trend across Europe as companies unrelated to the medical-device industry offer to retool factories to help make equipment to combat the shortage of devices such as respirators and face masks.

https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:35:292020-08-26 14:35:38Vehicle manufacturers retool to help medical device industry cope with demand

Thirona, taking AI from spin-off to 40 countries in 6 years

, 26 August 2020/in Corona News, E-News /by 3wmedia

Thirona, a Dutch start-up company specialising in AI to analyse medical images, is offering one of their products for free to medical imaging specialists in an effort to combat the COVID-19 pandemic. International Hospital speaks to Dr Eva van Rikxoort, the Managing Director and founder of Thirona, about the company and its products.
International Hospital: Thirona is a Dutch company established in 2014. Can you give our readers a bit of background about the company?
Eva van Rikxoort: Thirona started in 2014 as a spin-off from the Radboud University in Nijmegen. We started with two full-time employees and we have built our company to 25 full-time employees and 20 part-time medical analysists. Together, we developed artificial intelligence software to analyse chest CT scans, chest X-ray images and retina images. Healthcare specialists around the world use our AI software for diseases like asthma, COPD, tuberculosis and diabetic retinopathy.
IH: What led you to set it up?
EVR: I was doing research on chest CT analysis at the Radboud University with my co-founder Prof. Bram van Ginneken. We saw that there was a gap between research that was being done on potential clinical solutions and putting those into clinical practice; Thirona was founded with the vision to bridge that gap.
IH: What products did you have at that time?
EVR: We started with two launching customers for one solution – our AI solution for chest CT analysis.
IH: Where does the name Thirona come from?
EVR: The name Thirona comes from the Celtic goddess named Thirona, worshipped for healing. Although more commonly spelled as ‘Sirona’ in the Latin alphabet, the spelling Thirona was chosen to reflect our roots in thoracic image analysis.
IH: Delft Imaging appears to be part of Thirona. Can you tell us a bit more about Delft Imaging and the relationship between Thirona and Delft Imaging?
EVR: Technically, Thirona and Delft Imaging are separate companies, although we collaborate extensively and practically work together as sister companies. Where Thirona specialises in artificial intelligence software for medical imaging, Delft Imaging specialises in diagnostic innovations that can be used in developing countries. For example, our AI solution for chest X-ray analysis (CAD4TB) is developed by Thirona and distributed by Delft Imaging.
IH: Can you tell us briefly about your key products and where they are being used?
EVR: We essentially offer three categories of products. AI software for chest CT analysis focusing on COPD and asthma, called LungQ; AI software for X-ray analysis – focusing on tuberculosis, called CAD4TB; and AI software for the analysis of retinal images – focusing on DR, AMD and Glaucoma, called RetCAD. LungQ allows for the quantification of chest CTs and is used for patient monitoring, treatment planning and clinical trial analysis.It is mostly used across the United States and European Union. CAD4TB is used in 40 countries around the world and has screened more than 6 million people for tuberculosis. RetCAD is being rolled out across Europe and Asia.
IH: If we look at how the company has grown over the past 5-6 years — can you explain what has been the driving force behind the growth?
EVR: As a spin-off of the Radboud University, our company (and our solutions) is rooted in science. Every software product we develop is thoroughly validated (through 150+ publications to date) and that level of validation drives our growth, I believe; our customers know the type of quality we aim to offer.
IH: What guided your research and development? In other words, why did you take the product development route you have taken?
EVR: We are a demand-driven organisation. Meaning, we develop and work on where our customers and partners have needs to be supported. That has led us on the route we have been on for the past sevearl years.
IH: What are the main challenges have you faced and how have you overcome them?
EVR: One of the main challenges was keeping the same culture in the company during the growth from a small team of a few people with similar backgrounds to a larger more diverse team. We did this by installing a management team structure. By making it a focus for each team allowed us to overcome any difficulties.
IH: Most recently, you are offering a free AI-powered COVID-19 tool – the CAD4COVID-Xray. I understand it has been developed on the back of your successful TB-screening AI tool, CAD4TB. Can you explain how the CAD4TB tool works and how you adapted it for COVID-19 screening.
EVR: Yes, we developed two AI-powered COVID-19 tools actually: one for chest X-ray analysis and one for chest CT. Both have been built on the technical foundation of our existing and proven CAD4TB and LungQ solutions. Because there were underlying algorithms already in place, we were able to rapidly pivot these for the detection of COVID-19.
IH: How will this tool help healthcare facilities and COVID-19 patients?
EVR: CAD4COVID-XRay and CAD4COVID-CT automatically detect COVID-19 related abnormalities and thereby help with triage before any follow-up testing, like RT-PCR. This helps to reduce the workload of healthcare personnel and alleviate the burden on RT-PCR tests. Furthermore, both solutions show the percentage of affected lung tissue, thereby helping to track disease progress and recovery.
IH: How has the AI tool been validated? Has it been approved for use in Europe? In which other countries / regions has it been approved?
EVR: We have done several studies for both solutions (a publication on CAD4COVID-XRay was recently published in Radiology), through which we were able to prove that the software performs on par with expert human readers. For both solutions we have applied for class IIa CE certification, which we expect to receive soon.
IH: Are the CAD4COVID tools specific to certain platforms?
EVR: Both solutions are system agnostic. They process DICOM images which can be from any type of system.
IH: Are you receiving many requests for the CAD4COVID-Xray AI tool?
EVR: The response has been tremendous, which is probably also because we made the software available free-of-charge. CAD4COVIDXRay was launched first (March 31st) and has since been made available to 30+ healthcare facilities across more than 20 countries. We are especially focusing on resource-constrained settings (mostly in developing countries) because in those settings CT often has limited availability, making X-ray all the more important. CAD4COVID-CT was launched a month later and is available at 15+ facilities across 10 countries. We are also integrating it in several platforms through collaborations with partner companies like Smart Reporting.
IH: Why are you offering it for free?
EVR: We knew that for CAD4COVID to have the biggest impact during the pandemic and provide the most support to healthcare specialists globally, we needed to roll it out rapidly. In order to do that, we wanted to avoid as many hurdles as possible that could cause a delay in facilities being able to use the software. We believe cost is a big factor in that. That’s why we, supported by several organisations, have made it available to use free-of-charge.
IH: Can it be shared easily with healthcare facilities that want to use it?
EVR: Yes, people can fill in a form on www.delft.care/cad4covid (for CAD4COVID-XRay) and www.thirona.eu/cad4covid (for CAD4COVID-CT) and our team will reach out to them to help them set it up for their facility.
IH: Is any training required to use the CAD4COVID tools?
EVR: The tool is designed to be very intuitive, but we have developed an onboarding tool to guide new users on how to use the software effectively.
IH: Lastly, what’s in the pipeline for Thirona and how do you envisage development of the field of AI in medical imaging?
EVR: We are quickly expanding into other areas like cystic fibrosis on chest CT analysis, silicosis on chest X-ray analysis and cataract on retinal images. I believe that AI still has to prove itself in many settings, for many different use cases, but that it will become more and more accepted over time, and we already see this happening at incredible speed. In time, AI will leverage the efforts of our healthcare specialists, helping them to diagnose and determine treatment planning quicker, more effectively and reduce their workload in the meantime.

https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:35:292020-08-26 14:35:31Thirona, taking AI from spin-off to 40 countries in 6 years

COVID-19: Mid-field lessons from the pandemic

, 26 August 2020/in Corona News, E-News /by 3wmedia
https://interhospi.com/wp-content/uploads/sites/3/2020/06/logo-footer.png 44 200 3wmedia https://interhospi.com/wp-content/uploads/sites/3/2020/06/Component-6-–-1.png 3wmedia2020-08-26 14:35:292020-08-26 14:35:36COVID-19: Mid-field lessons from the pandemic
Page 2 of 6‹1234›»

Latest issue of International Hospital

April 2024

14 May 2025

Embedded therapist significantly reduces ICU nurse burnout

12 May 2025

GE HealthCare introduces new cardiac CT system with one-beat imaging capabilities

12 May 2025

GE HealthCare unveils AI-powered Invenia ABUS Premium for dense breast screening

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The medical devices information portal connecting healthcare professionals to global vendors

Sign in for our newsletter
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Media kit
    • Submit Press Release

Beukenlaan 137
5616 VD Eindhoven
The Netherlands
+31 85064 55 82
info@interhospi.com

PanGlobal Media IS not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Sign in for our newsletter

Free subscription